Advertisement

Biotherapy

, Volume 1, Issue 3, pp 161–167 | Cite as

Measurement of human granulocyte-macrophage colony-stimulating factor (GM-CSF) by enzyme-linked immunosorbent assay

  • Fusayuki Omori
  • Seiichi Okamura
  • Shin Hayashi
  • Shigeru Yamaga
  • Yuichi Hirota
  • Yoshiyuki Niho
Article

Summary

An IgG monoclonal antibody against recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), designated HGMI, was produced by fusion of immune mouse splenocytes with HAT-sensitive murine myeloma cells. A sandwich enzyme-linked immunosorbent assay (ELISA) for measurement of human GM-CSF was developed using this HGMI and a polyclonal antibody against GM-CSF raised in a rabbit. GM-CSF in culture supernatants of phytohemagglutinin (PHA)- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells (PBMC) were measured by this ELISA system and the conventional CFU-GM colony formation method. The data indicated that the ELISA was highly efficient and sensitive for the detection of as little as 50 pg/ml recombinant GM-CSF. The CFU-GM colony assay may be influenced by other cytokines which can enhance or suppress colony formation, and ELISA for GM-CSF is more useful for kinetic studies of precise levels of production from PBMC.

Key words

CFU-GM ELISA GM-CSF monoclonal antibody 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgess AW, Metcalf D. The nature and action of granulocyte-macrophage colony-stimulating factors. Blood 1980; 56: 947–58.Google Scholar
  2. 2.
    Wong GG, Witek JS, Temple PA, Wilkens KM, Leary AC, Luxenberg DP, Jones SS, Brown EL, Kay RM, Orr EC, Shoemaker C, Golde DW, Kaufman RJ, Hewick RM, Wang EA, Clark SC. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 1985; 228: 810–5.Google Scholar
  3. 3.
    Asano Y, Shibuya T, Okamura S, Yamaga S, Otsuka T, Niho Y. Effect of human recombinant granulocyte/macrophage colony-stimulating factor and native granulocyte colony-stimulating factor on clonogenic leukemic blast cells. Cancer Res 1987; 47: 5647–8.Google Scholar
  4. 4.
    Asano Y, Okamura S, Shibuya T, Harada M, Niho Y. Growth of clonogenic myeloblastic leukemic cells in the presence of human recombinant erythropoietin in addition to various human recombinant hematopoietic growth factors. Blood 1988; 72: 1682–6.Google Scholar
  5. 5.
    Okamura S, Hayashi S, Asano Y, Shibuya T, Otsuka T, Niho Y. Expression of the granulocyte/macrophage colony stimulating factor gene in leukemic blast cells from patients with acute non-lymphocytic leukemia. Biomed Pharmacotherapy 1988; 42: 65–8.Google Scholar
  6. 6.
    Weisbart RH, Golde DW, Clark SC, Wong GG, Gasson JC. Human granulocyte/macrophage colony-stimulating factor is a neutrophil activator. Nature 1985; 314: 361–3.Google Scholar
  7. 7.
    Lopez AF, Williamson DJ, Gamble JR, Begley CG, Harian JM, Klebanoff SJ, Waltersdorph A, Wong G, Clark SC, Vadas MA. Recombinant granulocyte-macrophage colony stimulating factor stimulatesin vitro mature neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest 1986; 78: 1220–8.Google Scholar
  8. 8.
    Yamaga S, Okamura S, Otsuka T, Niho Y. Effect of granulocyte-macrophage colony-stimulating factor on chemiluminescence of human neutrophils. Int J Cell Cloning 1989; 7: 50–8.Google Scholar
  9. 9.
    Groopman JE, Mitsuyasu RT, DeLeo MJ, Oette DH, Golde DW. Effect of recombinant human granulocyte macrophage colony-stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome. N Engl J Med 1987; 317: 593–8.Google Scholar
  10. 10.
    Vadhan-Raj S, Keating M, LeMaistre A, Hittelman WN, McCredie K, Trujillo JM, Broxmeyer HE, Henney C, Gutterman JU. Effects of recombinant human granulocyte macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl J Med 1987; 317: 1545–52.Google Scholar
  11. 11.
    Iscove NN, Senn JS, Till JE, McCulloch EA. Colony formation by normal and leukemic human marrow cells in culture: effect of conditioned medium from human leucocytes. Blood 1971; 37: 1–5.Google Scholar
  12. 12.
    Bradley TR, Metcalf D. The growth of mouse bone marrow cellsin vitro. Aust J exp Biol med Sci 1966; 44: 287–300.Google Scholar
  13. 13.
    Pike BL, Robinson WA. Human bone marrow colony growth in agar-gel. J Cell Physiol 1970; 76: 77–84.Google Scholar
  14. 14.
    Okamura S, Niho Y, Otsuka T, Kimura N, Yamano Y, Oka Y, Yamasaki K, Yanase T. Bone marrow fibroblast colony-forming cells (CFU-F) in patients with aplastic anemia. Acta Haematol Jpn 1984; 47: 1249–56.Google Scholar
  15. 15.
    Omori F, Okamura S, Takaku F, Niho Y. Measurement of human G-CSF by enzyme-linked immunosorbent assay using monoclonal antibody. Res Exp Med 1989; 189: 163–91.Google Scholar
  16. 16.
    Burgess AW, Begley CG, Johnson GR, Lopez AF, Williamson DJ, Mermod JJ, Simpson RJ, Schmitz A, DeLamarter JF. Purification and properties of bacterially synthesized human granulocyte-macrophage colony-stimulating factor. Blood 1987; 69: 43–51.Google Scholar
  17. 17.
    Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK, Barendt J, Platzer E, Moore MAS, Mertelsmann R, Welte K. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 1986; 232: 61–5.Google Scholar
  18. 18.
    Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–7.Google Scholar
  19. 19.
    Hawkes R, Niday E, Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 1982; 119: 142–7.Google Scholar
  20. 20.
    Cordon PJ, Luk KH, Park LS, March CJ, Hopp TP, Urdal DL. Generation of anti-peptide monoclonal antibodies which recognize mature CSF-2α (IL3) protein. J Immunol 1985; 135: 429–36.Google Scholar
  21. 21.
    Ouchterlony Ö. Diffusion-in-gel methods for immunological analysis II. Progr Allergy 1962; 6: 30–154.Google Scholar
  22. 22.
    Ey PL, Prowse SJ, Jenkin CR. Isolation of pure IgG1, IgG2a, and IgG2b immunoglobulins from mouse serum using protein A-Sepharose. Immunochem 1978; 15: 429–36.Google Scholar
  23. 23.
    Okamura S, Crane F, Jamal F, Messner HA, Mak TW. Single-cell immunofluorescent assay for terminal transferase: human leukaemic and non-leukaemic cells. Br J Cancer 1980; 41: 159–67.Google Scholar
  24. 24.
    Niho Y, Till JE, McCulloch EA. Granulopoietic progenitors in suspension culture: a comparison of stimulatory cells and conditioned media. Blood 1975; 45: 811–21.Google Scholar
  25. 25.
    Omori F, Okamura S, Hayashi S, Yamaga S, Shibuya T, Niho Y. Culture of colony-stimulating factor (CSF)-producing human bladder carcinoma cell line (HTB9) on artificial capillaries. Biomed Res 1987; 8: 301–5.Google Scholar
  26. 26.
    Ohhara N, Okamura S, Hayashi S, Otsuka T, Niho Y. Granulocyte-macrophage colony formation in vitro using human non-phagocytec bone marrow cells. Res Exp Med 1988; 188: 405–9.Google Scholar
  27. 27.
    Bos ES, van der Doelen AA, van Rooy N, Schurus AHWM. 3,3′,5,5′-Tetramethylbenzidine as an Ames test negative chromogen for horse-radish peroxidase in enzyme immunoassay. J Immunoassay 1981; 2(3&4): 187–204.Google Scholar
  28. 28.
    Das SK, Stanley ER, Guilbert LJ, Forman LW. Human colony-stimulating factor (CSF-1) radioimmunoassay: resolution of three subclasses of human colony-stimulating factors. Blood 1981; 58: 630–41.Google Scholar
  29. 29.
    Rege AB, Brookins J, Fisher JW. A radioimmunoassay for erythropoietin: serum levels in normal human subjects and patients with hemopoietic disorders. J Lab Clin Med 1982; 100: 829–43.Google Scholar
  30. 30.
    Hashida S, Nakagawa K, Ishikawa E, Ohtaki S. Basal level of human growth hormone (hGH) in normal serum. Clin Chim Acta 1985; 151: 185–6.Google Scholar
  31. 31.
    Okamura S, Haga K, Baba H, Nishitani H. Rapid quantification of alpha-fetoprotein in serum with a latex photometric immunoassay system. Clin Chem 1987; 33: 2306.Google Scholar
  32. 32.
    Schreiber RD, Hicks LJ, Celada A, Buchmeier NA, Gray PW. Monoclonal antibodies to murineγ-interferon which differentially modulate macrophage activation and antiviral activity. J Immunol 1985; 134: 1609–18.Google Scholar
  33. 33.
    Echtenacher B, Hederer R, Krammer PH. Biological effects of a rat monoclonal anti-mouse IFN-γ antibody produced byin vitro immunization. Immunobiol 1987; 176: 96–107.Google Scholar
  34. 34.
    Abrams JS, Pearce MK. Development of rat anti-mouse interleukin 3 monoclonal antibodies which neutralize bioactivityin vitro. J Immunol 1988; 140: 131–7.Google Scholar
  35. 35.
    Fibbe WE, Damme JV, Billian A, Voogt PJ, Duinkorken N, Kluck PMC, Falkenburg JHF. Interleukin-1 (22-k factor) induces release of granulocyte-macrophage colony stimulating activity from human mononuclear phagocytes. Blood 1986; 68: 1316–21.Google Scholar
  36. 36.
    Zsebo KM, Wypych J, Yuschenkoff VN, Lu H, Hunt P, Dukes PP, Langley KE. Effects of hematopoietin-1 and interleukin 1 activities on early hematopoietic cells of the bone marrow. Blood 1988; 71: 962–8.Google Scholar
  37. 37.
    Koike K, Nakahata T, Takagi M, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Okano A, Akiyama Y, Akabane T. Synergism of BSF-2/interleukin 6 and interleukin 3 on development of multipotential hemopoietic progenitors in serum-free culture. J Exp Med 1988; 168: 879–90.Google Scholar
  38. 38.
    Leary AG, Yang YC, Clark SC, Gasson JC, Golde DW, Ogawa M. Recombinant gibbon interleukin 3 supports formation of human multilineage colonies and blast cell colonies in culture: comparison with recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1987; 70: 1343–8.Google Scholar
  39. 39.
    Lopez AF, To LB, Yang YC, Gamble JR, Shannon MF, Burns GF, Dyson PG, Juttner CA, Clark S, Vadas MA. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3. Proc Natl Acad Sci USA 1987; 84: 2761–5.Google Scholar
  40. 40.
    Broxmeyer HE, Lu L, Platzer E, Feit C, Juliano L, Rubin B. Comparative analysis of the influences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte macrophage (CFU-GM) progenitor cells. J Immunol 1983; 131: 1300–5.Google Scholar
  41. 41.
    Degliantoni G, Murphy M, Kobayashi M, Francis MK, Perussia B, Trinchieri G. Natural killer (NK) cell-derived hematopoietic colony-inhibitory activity and NK cytotoxic factor: relationship with tumor necrosis factor and synergism with immune interferon. J Exp Med 1985; 162: 1512–30.Google Scholar
  42. 42.
    Murphy M, Loudon R, Kobayashi M, Trinchieri G.γ interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation. J Exp Med 1986; 164: 263–79.Google Scholar
  43. 43.
    Takahashi M, Oshimi K, Saito H, Mizoguchi H. Inhibition of human granulocyte-macrophage colony formation by interleukin 2-treated lymphocytes. Exp Hematol 1988; 16: 226–30.Google Scholar
  44. 44.
    Fibbe WE, Damme JV, Billiau A, Duinkorken N, Lurvink E, Ralph P, Altrock BW, Kaushansky K, Willemze R, Falkenburg JHF. Human fibroblasts produce granulocyte CSF, macrophage-CSF, and granulocyte-macrophage CSF following stimulation by interleukin-1 and poly(rI) · poly(rC). Blood 1988; 72: 860–6.Google Scholar
  45. 45.
    Cebon J, Dempsey P, Fox R, Kannourakis G, Bonnem E, Burgess AW, Morstyn G. Pharmacokinetics of human granulocyte-macrophage colony-stimulating factor using a sensitive immunoassay. Blood 1988; 72: 1340–7.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Fusayuki Omori
    • 1
  • Seiichi Okamura
    • 1
  • Shin Hayashi
    • 1
  • Shigeru Yamaga
    • 1
  • Yuichi Hirota
    • 2
  • Yoshiyuki Niho
    • 2
  1. 1.Cancer CenterKyushu UniversityFukuokaJapan
  2. 2.First Department of Internal Medicine, Faculty of MedicineKyushu UniversityFukuokaJapan

Personalised recommendations