Skip to main content
Log in

Etudes électrochimiques par la méthode des indicateurs radioactifs (électrolyses en solution extrêmement diluée)

  • Published:
Experientia Aims and scope Submit manuscript

Summary

The ordinary methods of determining electrochemical potentials cease to be applicable in extreme dilution. The energy conditions of the formation of very thin electrolytic deposits (less than a monoatomic layer) can then be explored by means of radioactive indicators, following particular polarisation curves. These curves give the rate of deposition or the equilibria of distribution as a function of the potential applied to an inert electrode. A discussion is given of the relationship between the critical potential defined by such curves and the theoretical potential computed from the Nernst equation for the given concentration. Experimental results are collected for the critical potentials of the deposition of Po, Bi, Pb, Ag, etc., from extremely dilute solutions on to various metals.

It is shown that the heterogeneity of the electrode surface plays a considerable rôle in these electrolyses. It explains the overvoltage and the undervoltage observed in certain cases, and the exponential form of the polarisation curves. In particular, the repartition of bismuth between a nitric acid solution of the ions of this metal and a silver cathode is represented by two Freundlich isotherms: — one of these with an exponent 1/n<1 corresponds to very small coverages and is explained by the heterogeneity of the surface; the other one with 1/n>1 is valid for coverages greater than 1% and is due to the intervention of attraction forces between the deposited atoms.

Finally, it is concluded, from electrolytic experiments on Bi+++ 3.10−16 N solutions, that even at this extreme dilution (6.104 ions/cm3) the thermodynamic activity of these ions in solution is quite normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. F. P. Bowden etE. K. Rideal, Proc. Roy. Soc. [A]120, 80 (1928).

    CAS  Google Scholar 

  2. W. G. Frankenburg, J. A. C. S.66, 1827, 1838 (1944).

    Article  CAS  Google Scholar 

  3. A. Schmid, P. Vögele etW. Winkelmann, Helv. chim. acta15, 393 (1932).

    Article  Google Scholar 

  4. M. Andauer etE. Lange, Z. phys. Chem. Bodenstein-Band, 247 (1931).

  5. F. Müller etW. Dürichen, Z. phys. Chem. [A]182, 233 (1938).

    Article  Google Scholar 

  6. G. v. Hevesy etF. Paneth, Wien. Ber.123, 1618 (1914); Physik. Z.15, 801 (1914).

    Google Scholar 

  7. F. Paneth etG. v. Hevesy, Wien. Ber.122, 1037 (1913).

    Google Scholar 

  8. K. Herzfeld, Physik. Z.14, 29 (1913).

    CAS  Google Scholar 

  9. Toutes les considérations qui suivent se rapportent aux conditions électrolytiques où le volume de la solution et la surface de l'électrode restent constants. L'effet de ces deux facteurs a été analysé parL. B. Rogers etA. F. Stehney, J. Electrochem. Soc.95, 25 (1949).

    Article  CAS  Google Scholar 

  10. J. Heyrovsky etD. Ilkovic, Coll. Czechoslov. Chem. Commun.7, 198 (1935).

    Article  CAS  Google Scholar 

  11. M. Haïssinsky, J. Chim. Phys.43, 21 (1946).

    Article  Google Scholar 

  12. A. H. Aten etL. N. Boerlage, Rec. Trav. chim. Pays-Bas39, 83 (1920).

    Google Scholar 

  13. R. W. Gurney, Proc. Royal. Soc. [A]134, 137 (1932).

    Google Scholar 

  14. H. S. Taylor, J. A. C. S.53, 584 (1931); Chem. Rev.9,1 (1931).

    Google Scholar 

  15. S. Z. Roginsky,Adsorption et Catalyse, Acad. Sci. U.R.S.S. (Moscou 1948).

  16. F. F. Volkenstein, J. Chim. Phys. Russe15, 296 (1941).

    Google Scholar 

  17. M. Camarcat, G. Bouissières etM. Haïssinsky, J. Chim. Phys.46, 153 (1949).

    Article  CAS  Google Scholar 

  18. J. F. Flagg etW. E. Bleidner, J. Chem. Physics13, 269 (1945).

    Article  CAS  Google Scholar 

  19. G. L. Johnson, R. F. Leininger etE. Segré, J. Chem. Physics17, 1 (1949).

    Article  CAS  Google Scholar 

  20. Pour une tentative d'une telle détermination, voirM. Haïssinsky, J. Chim. Phys.32, 116 (1935).

    Article  Google Scholar 

  21. G. Tammann etC. Wilson, Z. anorg. Chem.173, 137 (1928).

    Article  CAS  Google Scholar 

  22. F. Joliot, J. Chim. Phys.27, 119 (1930).

    Article  CAS  Google Scholar 

  23. M. Haïssinsky, J. Chim. Phys.29, 453 (1932);30, 27 (1933); Trans. Amer. electrochem. Soc.70, 1 (1936).

    Article  Google Scholar 

  24. J. F. Flagg etW. E. Bleidner, J. Chem. Physics13, 269 (1945).

    Article  CAS  Google Scholar 

  25. A. Coche, C. r. Acad. Sci. Paris225, 936 (1947).

    CAS  Google Scholar 

  26. M. Haïssinsky etJ. Danon, J. Chim. Phys.48, 106 (1951);49, C 123 (1952).

    Article  Google Scholar 

  27. M. Camarcat, G. Bouissières etM. Haïssinsky, J. Chim. Phys.46, 153 (1949).

    Article  CAS  Google Scholar 

  28. M. Wertenstein, C. r. Acad. Sci. Varsovie10, 771 (1917).

    Google Scholar 

  29. F. Joliot, J. Chim. Phys.27, 119 (1930).

    Article  CAS  Google Scholar 

  30. A. Coche, H. Faraggi, P. Avignon etM. Haïssinsky, J. Phys. Radium10, 312 (1949).

    Article  CAS  Google Scholar 

  31. M. Haïssinsky etA. Coche, J. Chem. Soc. London1949, 397.

  32. M. Haïssinsky, J. Chim. Phys.30, 27 (1933).

    Article  Google Scholar 

  33. A. Coche etM. Haïssinsky, C. r. Acad. Sci. Paris222, 1284 (1946).

    CAS  Google Scholar 

  34. M. Wertenstein, C. r. Acad. Sci. Varsovie10, 771 (1917).

    Google Scholar 

  35. A. Coche etM. Haïssinsky, C. r. Acad. Sci. Paris222, 1284 (1946).

    CAS  Google Scholar 

  36. M. Haïssinsky, J. Chim. Phys.32, 116 (1935).

    Article  Google Scholar 

  37. A. Coche, C. r. Acad. Sci. Paris225, 936 (1947).

    CAS  Google Scholar 

  38. J. Danon etM. Haïssinsky, J. Chim. Phys.47, 951 (1950).

    Google Scholar 

  39. A. Coche, J. Chim. Phys.48, 135 (1951) et sous presse.

    Article  CAS  Google Scholar 

  40. M. Haïssinsky etJ. Danon, J. Chim. Phys.48, 106 (1951);49, C 123 (1952).

    Article  Google Scholar 

  41. O. Erbacher, Z. phys. Chem. [A]163, 215 (1933);182, 243 (1938).

    Article  Google Scholar 

  42. A. Coche, C. r. Acad. Sci. Paris225, 936 (1947).

    CAS  Google Scholar 

  43. S. Z. Roginsky,Adsorption et Catalyse, Acad. Sci. U.R.S.S., (Moscon 1948).

  44. L. B. Rogers etA. F. Stehney, J. Electrochem. Soc.95, 25 (1949).

    Article  CAS  Google Scholar 

  45. L. B. Rogers, D. P. Krause, C. Griess etO. B. Ehrlinger, J. Electrochem. Soc.95, 33 (1949).

    Article  CAS  Google Scholar 

  46. L. B. Rogers, J. T. Byrne etJ. C. Griess, 99th Meeting Electrochem. Soc. Washington (Avril 1951).

  47. H. v. Euler, Z. Elektrochem.28, 2, 464 (1922).

    Google Scholar 

  48. B. V. Rollin, J. A. C. S.62, 86 (1950).

    Article  Google Scholar 

  49. C. Haenny, communication personnelle.

  50. C. Haenny etP. Mivelaz, Helv. chim. acta31, 633 (1948).

    Article  CAS  Google Scholar 

  51. C. Haenny etP. Mivelaz avaient d'abord constaté pour ces deux électrodes une sous-tension de 0,18 V pour une concentration qui avait été évaluée à 10−15 N. Une vérification ultérieure a montré que la valeur de la concentration a été fortement surestimée, de sorte que si une sous-tension existe, elle est beaucoup plus faible.

  52. N. Thon,L'électrolyse et la polarisation électrique Hermann, Paris (1934).

    Google Scholar 

  53. T. Erdey-Grüz, Proc. Roy. Soc. [A]172, 163 (1935).

    Google Scholar 

  54. H. Fischer, Z. Elektrochem.49, 342, 376 (1943).

    CAS  Google Scholar 

  55. M. Haïssinsky etM. Guillot, J. Phys. Radium5, 419 (1934).

    Article  Google Scholar 

  56. L. B. Rogers etA. F. Stehney, J. Electrochem. Soc.95, 25 (1949).

    Article  CAS  Google Scholar 

  57. A. Coche, H. Faraggi, P. Avignon etM. Haïssinsky, J. Phys. Radium10, 312 (1949).

    Article  CAS  Google Scholar 

  58. Y. B. Zeldowitsch, Acta phys. chim. U.R.S.S.1, 1961 (1934).

    Google Scholar 

  59. G. Halsey etH. S. Taylor, J. Chem. Physics15, 624 (1947).

    Article  CAS  Google Scholar 

  60. G. Halsey, J. Chem. Physics16, 931 (1948).

    Article  CAS  Google Scholar 

  61. S. Z. Roginsky,Adsorption et Catalyse Moscou (1948).

  62. R. Sips, J. Chem. Physics16, 490 (1948).

    Article  CAS  Google Scholar 

  63. F. F. Volkenstein, J. Chim. Phys. Russe21, 163 (1947).

    Google Scholar 

  64. E. Cremer, Monatshefte Chem.72, 126 (1947); J. Chim. Phys.46, 411 (1949).

    Article  Google Scholar 

  65. E. Cremer etS. Flügge, Z. phys. Chem. [B]41, 453 (1939).

    Google Scholar 

  66. W. G. Frankenburg, J. A. C. S.66, 1827, 1838 (1944).

    Article  CAS  Google Scholar 

  67. F. F. Volkenstein, J. Chim. Phys. Russe21, 163 (1947).

    Google Scholar 

  68. G. Halsey, J. Chem. Physics16, 931 (1948).

    Article  CAS  Google Scholar 

  69. Y. M. Goldfeld etN. I. Kobosev, J. Chim. phys. Russe15, 257, 275 (1941).

    CAS  Google Scholar 

  70. G. Halsey, J. Chem. Physics16, 931 (1948).

    Article  CAS  Google Scholar 

  71. H. S. Taylor, J. Chim. Phys.47, 74, 122 (1950).

    Article  CAS  Google Scholar 

  72. F. F. Volkenstein, J. Chim. Phys. Russe21, 163 (1947).

    Google Scholar 

  73. A. Shlygine etA. Froumkine, Acta phys. chim. U.R.S.S.3, 791 (1935).

    Google Scholar 

  74. M. I. Temkine, J. Chim. Phys. Russe15, 296 (1941).

    Google Scholar 

  75. Voir par exemple sur ce sujetR. Piontelli, Metallurg. ital.38, 1 (1946); 3rd Int. Confer. Electrodeposition, No 19 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haïssinsky, M. Etudes électrochimiques par la méthode des indicateurs radioactifs (électrolyses en solution extrêmement diluée). Experientia 8, 125–132 (1952). https://doi.org/10.1007/BF02170212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02170212

Navigation