Skip to main content

Advertisement

Log in

Host-mediated antiviral activity ofLactobacillus casei against cytomegalovirus infection in mice

  • Published:
Biotherapy

Abstract

The protective effect of heat-killedLactobacillus casei (LC) against murine cytomegalovirus (MCMV) infection was examined. ICR mice treated once with LC 1 day or 2 days before challenge survived lethal infection, but untreated orLactobacillus fermentum (LF)-treated mice did not. The protective effect was evidenced by an increase in plaque-forming units (PFU) per 50% lethal dose (LD50) and a decrease in titers of infectious viruses replicated in the target organs. This was further confirmed by severity of histopathological damage to the target organs, especially the liver. LC neither inactivated MCMV nor inhibited its replication in mouse embryonic fibroblasts (MEF). The spleen cells from LC-treated mice inhibited its replication in MEF on co-cultivation. Augmentation by LC of splenic natural killer (NK) cell activity correlated with survival of mice from otherwise lethal MCMV infection. Cytotoxic activity of peritoneal cells and level of serum interferon (IFN) were elevated after MCMV infection, but they were not associated with survival of mice nor with treatment of LC. The protective effect of LC was not clear in NK-deficient beige mutant (bgJ/bgJ) mice, when compared with that in their littermate (bgJ/+) mice. Poor protection of bgJ/bgJ mice by LC treatment correlated with failure to induce NK cell activity by LC treatment in the mutant mice. Thus, it is likely that LC protects mice from MCMV infection by augmentation of NK cell activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piessens WF, Campbell M, Churchill WH. Inhibition or enhancement of rat mammatory tumors dependent on dose of BCG. J Natl Cancer Inst 1977; 59: 207–11.

    PubMed  Google Scholar 

  2. Yasumoto K, Manabe H, Yanagawa E, Nagano N, Ueda H, Hirota N, Ohta M, Nomoto K, Azuma I, Yamamura Y. Nonspecific adjuvant immunotherapy of lung cancer with cell wall skeleton ofMycobacterium bovis bacillus calmette-guerin. Cancer Res 1979; 39: 3262–67.

    PubMed  Google Scholar 

  3. Zbar B, Bernstein ID, Rapp HJ. Suppression of tumor growth at the site of infection with living bacillus calmette-guerin. J Natl Cancer Inst. 1971; 46: 831–39.

    PubMed  Google Scholar 

  4. Cantrell JL, Wheat RW. Antitumor activity and lymphoreticular stimulation properties of fraction isolated fromCorynebacterium parvum. Cancer Res 1979; 39: 3554–63.

    PubMed  Google Scholar 

  5. Conley FK, Remington JS. Effect ofCorynebacterium parvum on tumor growth in the central nervous system in mice. J Natl Cancer Inst 1978; 61: 461–64.

    PubMed  Google Scholar 

  6. Woodruff MFA, Warner NL, Effect ofCorynebacterium on tumor growth in normal and athymic (nude) mice. J Natl Cancer Inst 1977; 58: 111–16.

    PubMed  Google Scholar 

  7. Mashiba H, Gojobori M, Matsunaga K. Antitumor effect of combined use of OK-432 and yeast cell wall with mitomycin C in mice. Gann 1977; 68: 703–8.

    PubMed  Google Scholar 

  8. Okamoto H, Shoin S, Kashimura S, Shimizu, R. Studies on the antitumor and streptolysin S-forming abilities of haemolytic streptococci. Jpn J Microbiol 1967; 11: 323–36.

    PubMed  Google Scholar 

  9. Ota K (ed.) Clinical Application of OK-432 for Control of Cancer. Tokyo: Excerpta Medica, 1986.

    Google Scholar 

  10. Yamamura Y, Sakurai M, Ogura T, Azuma I. Adjuvant immunotherapy of lung cancer with BCG cell wall skeleton (BCG-CWS). Cancer 1979; 43: 1314–19.

    PubMed  Google Scholar 

  11. Glasgow LA, Fischblach J, Bryant SM, Kern ER. Immunomodulation of host resistance to experimental viral infections in mice. J Infect Dis 1977; 135: 763–70.

    PubMed  Google Scholar 

  12. Kirchner H, Scott MT, Hirt HM, Munk K. Protection of mice against viral infection byCorynebacterium parvum andBordetella pertussis. J. Gen. Virol 1978; 41: 97–104.

    PubMed  Google Scholar 

  13. Bloksma N, De Heer, E, Van Dijk H, Willers JM. Adjuvanticity of lactobacilli I. Differential effects of viable and killed bacteria. Clin Exp Immunol 1979; 37: 367–75.

    PubMed  Google Scholar 

  14. Kato I, Kobayashi S, Yokokura T, Mutai M. Antitumor activity ofLactobacillus casei in mice. Gann 1981; 72: 517–23.

    PubMed  Google Scholar 

  15. Yasutake N, Kato I, Ohwaki M, Yokokura T, Mutai M. Host-mediated antitumor activity ofLactobacillus casei in mice. Gann 1984; 75: 72–80.

    PubMed  Google Scholar 

  16. Miake S, Nomoto K, Yokokura T, Yoshikai Y, Mutai M, Nomoto K. Protective effect ofLactobacillus casei onPseudomonas aeruginosa infection in mice. Infect Immun 1985; 48: 480–85.

    PubMed  Google Scholar 

  17. Watanabe T, Saito H. Protection of mice against herpes simplex virus infection by aLactobacillus casei preparation (LC9018) in combination with inactivated viral antigen. Microbiol Immunol 1986; 30: 111–22.

    PubMed  Google Scholar 

  18. Minamishima Y, Eizuru Y, Yoshida A, Fukunishi R. Murine model for immunophylaxis of cytomegalovirus infection: I Efficacy of immunization. Microbiol Immunol 1978; 22: 693–700.

    PubMed  Google Scholar 

  19. Kato I, Yokokura T, Mutai M. Macrophage activation byLactobacillus casei in mice. Microbiol Immunol 1983; 27: 611–18.

    PubMed  Google Scholar 

  20. Sawai H, Ishibashi K, Itoh M, Watanabe S. 2′,5′-Oligoadenylate and 2′,5′-oligoadenylate phosphodiesterase in human plasma. Biochem Biophys Res Commun 1984; 125: 1061–6.

    PubMed  Google Scholar 

  21. Bancroft GJ, Shellam GR, Chalmer JE. Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: Correlation with patterns of resistance. J Immunol 1981; 126: 988–94.

    PubMed  Google Scholar 

  22. Bukowski JF, Woda BA, Welsh RM. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol 1984; 52: 119–28.

    PubMed  Google Scholar 

  23. Ebihara K, Minamishima Y. Protective effect of biological modifiers on murine cytomegalovirus infection. J Virol 1984; 51: 117–22.

    PubMed  Google Scholar 

  24. Grundy (Chalmer) JE, Trapman J, Allan JE, Shellam GR, Melief CJM. Evidence for a protective role of interferon in resistance to murine cytomegalovirus and its control by non-H-2-linked genes. Infect Immun 1982; 37: 143–50.

    PubMed  Google Scholar 

  25. Okada M, Minamishima Y. The efficacy of biological response modifiers against murine cytomegalovirus infection in normal and immunodeficient mice. Microbiol Immunol 1987; 31: 45–57.

    PubMed  Google Scholar 

  26. Quinnan GV, Manischewitz JE. The role of natural killer cells and antibody-dependent cell-mediated cytotoxicity during murine cytomegalovirus infection. J Exp Med 1979; 150: 1549–54.

    PubMed  Google Scholar 

  27. Shellam GR, Allan JE, Papadimisriou JM, Bancroft GJ. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc Natl Acad Sci USA 1981; 78: 5104–8.

    PubMed  Google Scholar 

  28. Kato I, Yokokura T, Mutai M. Augmentation of mouse natural killer cell activity byLactobacillius casei and its surface antigens. Microbiol Immunol 1984; 28: 209–17.

    PubMed  Google Scholar 

  29. Chong KT, Gresser I, Mims CA. Interferon as a defence mechanism in mouse cytomegalovirus infection. J Gen Virol 1983; 64: 461–64.

    PubMed  Google Scholar 

  30. Roder J, Duwe A. The beige mutation in the mouse selective impairs natural killer function. Nature 1979; 278: 451–53.

    PubMed  Google Scholar 

  31. Yokokura T, Nomoto K, Shimizu T, Nomoto K. Enhancement of hematopoietic response of mice by subcutaneous administration ofLactobacillus casei. Infect Immun 1986; 52: 156–60.

    PubMed  Google Scholar 

  32. Macfarlan RI, Burns WH, White DO. Two cytotoxic cells in peritoneal cavity of virus-infected mice: Antibody dependent macrophages and non-specific killer cells. J Immunol 1977; 119: 1569–74.

    PubMed  Google Scholar 

  33. Selgrade MK, Osborn JE. Role of macrophage in resistance to murine cytomegalovirus. Infect Immun 1974; 10: 1383–90.

    PubMed  Google Scholar 

  34. Quinnan GV, Manischewitz JE, Ennis FA. Role of cytotoxic T lymphocytes in murine cytomegalovirus infection. J Gen Virol 1980; 47: 503–8.

    PubMed  Google Scholar 

  35. Star SE, Allison AC. Role of T lymphocyte in recovery from cytomegalovirus infection. Infect Immun 1977; 17: 458–62.

    PubMed  Google Scholar 

  36. Osborn JE, Blazkovec AA, Walker DL. Immunosuppression during acute murine cytomegalovirus infection. J Immunol 1968; 100: 835–44.

    PubMed  Google Scholar 

  37. Manischewitz JE, Quinnan GV Jr. Antivirus antibodydependent cell-mediated cytotoxicity during murine cytomegalovirus infection. Infect Immun 1980; 29: 1050–54.

    PubMed  Google Scholar 

  38. Osborn JE, Medearis DN. Studies of relationship between mouse cytomegalovirus and interferon. Proc Soc Exp Biol Med 1966; 121: 819–23.

    PubMed  Google Scholar 

  39. Oie HK, Easton JM, Ablashi DV, Baron S. Murine cytomegalovirus: induction of and sensitivity to interferonin vitro. Infect Immun 1975; 12: 1012–17.

    PubMed  Google Scholar 

  40. Wiltroth RH, Mathieson BJ, Talmadge JE, Reynolds CW, Zhang S-R, Herberman RB, Ortaldo JR. Augmentation of organ-associated natural killer activity by biological response modifiers. J Exp Med 1984; 160: 1431–49.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohashi, T., Yoshida, A. & Minamishima, Y. Host-mediated antiviral activity ofLactobacillus casei against cytomegalovirus infection in mice. Biotherapy 1, 27–39 (1989). https://doi.org/10.1007/BF02170133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02170133

Key words

Navigation