Pattern electroretinogram of the blue cones

  • G. Niepel
  • E. Dodt
Clinical Investigations


In man the electroretinogram to pattern reversal stimuli (P-ERG) represents a cone response of the proximal retina, dominated by the cone mechanisms sensitive to red (R) and green (G). Additionally there is a cone mechanism sensitive to blue (B) which can be studied with and without steady exposure to yellow light. During exposure to a super-imposed uniform yellow background (576 nm) the transient P-ERG of the B cones is represented by potentials of small amplitude (< 1 μV). The latency (peak time) of the response is about 30 ms longer than that of the midspectral (R and G) cones. Furthermore, the P-ERG of the B cones saturates at low luminances and exhibits a maximum amplitude at about 460 nm. Without yellow adaptation, the P-ERG of the B cones can be studied only with low-intensity stimuli of short wavelengths. Near threshold, both the long-latency response of the B cones and the short-latency response of the R and G cones are recorded simultaneously, forming a double-peaked wave shape. At suprathreshold luminances, even of short wavelength (435 nm) the P-ERG of the B cones is concealed by the larger short latency response of the midspectral cone mechanism.


Retina Short Wavelength Latency Response Short Latency Yellow Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arden GB, Carter RM, Hogg C, Siegel IM, Margolis S (1979) A gold foil electrode: extending the horizons for clinical electroretinography. Invest Ophthalmol Vis Sci 18:421–426Google Scholar
  2. 2.
    Armington JC (1976) Spectral sensitivity of low level electroretinograms. Vision Res 16: 31–35Google Scholar
  3. 3.
    Aguilar M, Stiles WS (1954) Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta 1:59–65Google Scholar
  4. 4.
    Berninger TA (1986) The pattern electroretinogram and its contamination. Clin Vis Sci 1: 185–190Google Scholar
  5. 5.
    Boynton RM, Whitten DN (1972) Selective chromatic adaptation in primate photoreceptors. Vision Res 12:855–874Google Scholar
  6. 6.
    Copenhaver RM, Gunkel RD (1959) The spectral sensitivity of colour-defective subjects determined by electroretinography. Arch Ophthalmol 62:55–68Google Scholar
  7. 7.
    Dartnall HJA, Bowmaker JK, Mollon JD (1983) Mikrospectrophotometry of human photoreceptors. In: Mollon JD, Sharpe LT (eds) Colour vision: physiology and psychophysics. Academic Press, London, pp 69–80Google Scholar
  8. 8.
    Dodt E, Copenhaver RM, Gunkel RD (1958) Photopischer Dominator und Farbkomponenten im menschlichen Elektroretinogramm. Pflüger's Arch 267:497–507Google Scholar
  9. 9.
    Evers HU, Gouras P (1986) Three cone mechanisms in the primate electroretinogram: two with, one without off-center bipolar responses. Vision Res 26:245–254Google Scholar
  10. 10.
    Gouras P (1970) Electroretinography: some basic principles. Invest Ophthalmol 9: 557–569Google Scholar
  11. 11.
    Huber C (1972) Visual evoked responses during exposure to strong colored lights. Ophthalmic Res 3:55–62Google Scholar
  12. 12.
    Jankov E (1978) Spektralsensitivitaet der off-Antwort im menschlichen VECP bei verschiedenfarbiger Adaptation. Graefe's Arch Clin Exp Ophthalmol 206:121–133Google Scholar
  13. 13.
    Johnson EP, Riggs LA, Schick AML (1966) Photopic retinal potentials evoked by phase alternation of a barred pattern. Vision Res [Suppl II] 6:75–91Google Scholar
  14. 14.
    Kaiser PK, Boynton RM (1985) Role of the blue mechanism in wavelength discrimination. Vision Res 25:523–529Google Scholar
  15. 15.
    Kawasaki K (1987) Electrodiagnosis of red-green colour deficiency. Jpn J Ophthalmol 31: 50–60Google Scholar
  16. 16.
    Kellermann FJ, Adachi-Usami E (1972/73) Spectral sensitivities of colour mechanisms isolated by the human visual-evoked response. Ophthalmic Res 4:199–210Google Scholar
  17. 17.
    Kirkham TH, Coupland SG (1981) Abnormal pattern electroretinograms with macular cherry-red spots: evidence for selective ganglion cell damage. Curr Eye Res 1:367–372Google Scholar
  18. 18.
    Korth M (1980) Luminosity functions of the human electroretinogram wavelets evoked with pattern-reversal stimuli. Invest Ophthalmol Vis Sci 19:810–816Google Scholar
  19. 19.
    Ksinsik R (1967) Adaptive Parameter der Blauverschiebung der Spektralsensitivitaet des Kaninchenauges. Graefe's Arch Clin Exp Ophthalmol 172:112–124Google Scholar
  20. 20.
    Mehaffey L, Berson EL (1974) Cone mechanisms in the electroretinogram of the cynomolgus monkey. Invest Ophthalmol 13:266–273Google Scholar
  21. 21.
    Mollon JD (1982) A taxonomy of tritanopias. Doc Ophthalmol Proc Ser 33:87–101Google Scholar
  22. 22.
    Niepel G, Dodt E (1987) Spektrale Empfindlichkeit im menschlichen Elektroretinogramm bei Darbietung von Musterreizen. Fortschr Ophthalmol 84:635–640Google Scholar
  23. 23.
    Norren D van (1987) Contribution of electroretinography to diagnosis of color vision deficiencies. Jpn J Ophthalmol 31:41–49Google Scholar
  24. 24.
    Norren D van, Padmos P (1973) Human and macaque blue cones studied with electroretinography. Vision Res 13:1241–1254Google Scholar
  25. 25.
    Padmos P, Norren D van, Jaspers Faijer JW (1978) Blue cone function in a family with an inherited tritan defect tested with electroretinography and psychophysics. Invest Ophthalmol Vis Sci 17:436–441Google Scholar
  26. 26.
    Sawusch M, Pokorny J, Smith VC (1987) Clinical electroretinography for short wavelength sensitive cones. Invest Ophthalmol Vis Sci 28:966–974Google Scholar
  27. 27.
    Stiles WS (1959) Colour vision: the approach through increment threshold sensitivity. Proc Natl Acad Sci USA 45:100–114Google Scholar
  28. 28.
    Stiles WS (1980) The two-colour threshold method and π mechanisms: historical note. In: Verriest G (ed) Colour vision deficiencies V. Hilger, Bristol, pp 111–114Google Scholar
  29. 29.
    Uji Y, Yokoyama M (1984) Spectral electroretinogram in deutans as recorded with time-locked scanning method. Doc Ophthalmol 40:243–249Google Scholar
  30. 30.
    Valeton JM, van Norren D (1979) Transient tritanopia at the level of the ERG b-wave. Vision Res 19:689–693Google Scholar
  31. 31.
    Wald G (1964) The receptors of human color vision. Action spectra of three visual pigments in human cones account for normal color vision and color-blindness. Science 145:1007–1017Google Scholar
  32. 32.
    Wolf T, Dodt E (1987) Pattern ERG in rod monochromats and in sectorial retinitis pigmentosa. XXV ISCEV Symposium, Sarasota, USA, p P19Google Scholar
  33. 33.
    Zrenner E (1983) Neurophysiological aspects of color vision in primates. In: Braitenberg V (ed) Studies of brain function, vol 9. Springer, Berlin Heidelberg New York, pp 62–65Google Scholar
  34. 34.
    Zrenner E, Gouras P (1979) Blue-sensitive cones of the cat produce a rodlike electroretinogram. Invest Ophthalmol Vis Sci 18:1076–1081Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • G. Niepel
    • 1
  • E. Dodt
    • 1
  1. 1.Max-Planck Institut für physiologische und klinische ForschungW.G. Kerckboff-InstitutBad NauheimFederal Republic of Germany

Personalised recommendations