Blood-retinal and blood-aqueous barrier permeability, lens autofluorescence and transmission in insulin-dependent diabetic youngsters

  • Els van Wirdum
  • Jaap van Best
  • G. Jan Bruining
  • Carine de Beaufort
  • Jendo Oosterhuis
Clinical Investigations


The permeability of the blood aqueous and blood retinal barrier, the lens transmission, and the lens autofluorescence were measured by fluorophotometry in 7 diabetic youngsters treated by conventional therapy (mean age, 10.9 ± 4.4 years), 9 diabetic youngsters treated by continuous s.c. insulin infusion (mean age, 12.3 ± 5.0 years), and 13 healthy controls (mean age, 12.4 ± 5.1 years). The mean permeability value for the blood retinal barrier of the diabetic juveniles did not differ significantly from that of the controls (P > 0.4), and no correlation with metabolic control (HbAlc) or duration of diabetes was found (P > 0.1). No differences in lens transmission larger than 4% were found. The mean value of lens autofluorescence corrected for normal age-dependency was found to correlate with the metabolic control: an increase of mean HbAlc by 1% resulted in an extra increase of autofluorescence by 11% (P = 0.002). This result suggests that good metabolic control can suppress excess lens autofluorescence, a precursor of cataract.


Public Health Permeability Cataract Metabolic Control Conventional Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Best JA van, Tjin A Tsoi EWSJ, Boot JP, Oosterhuis JA (1985) In vivo assessment of lens transmission for blue-green light by autofluorescence measurement. Ophthalmic Res 17:90–95Google Scholar
  2. 2.
    Best JA van, Kappelhof JP, Laterveer L, Oosterhuis JA (1987) Blood aqueous barrier permeability versus age by fluorophotometry. Curr Eye Res 6:855–863Google Scholar
  3. 3.
    Best JA van, Bollemeijer JG, Sterk CC (1988) Corneal transmission in whole human eyes. Exp Eye Res 46:765–768Google Scholar
  4. 4.
    Bleeker JC, Best JA van, Vrij L, Velde EA van der, Oosterhuis JA (1986) Autofluorescence of the lens in diabetic and healthy subjects by fluorophotometry. Invest Ophthalmol Vis Sci 27:791–794Google Scholar
  5. 5.
    Boot JP, Best JA van, Tjin A Tsoi EWSJ, Kappelhof JP, Oosterhuis JA (1987) Plasma fluorescein decay determination during fluorophotometry. Doc Ophthalmol 65:403–422Google Scholar
  6. 6.
    Burger W, Hovenor G, Dusterhus R, Hartman R, Weber R (1986) Prevalence and development of retinopathy in children and adolescents with type 1 (insulin dependent) diabetes mellitus. A longitudinal study. Diabetologica 29:17–22Google Scholar
  7. 7.
    Dorchy H, Touissant D (1978) Leakage of fluorescein first sign of juvenile diabetic retinopathy. Acta Paediatr Scand [Suppl] 277:47–53Google Scholar
  8. 8.
    Dornan TL, Ting A, McPherson K, Plowright C, Mann JI, Turner RC (1981) Poor diabetic control and genetic type (HLA-DR4) are risk-factors for retinopathy in insulin dependent diabetics. Diabetologia 21:265Google Scholar
  9. 9.
    Frank RN, Hoffman WH, Podgor MJ, Joondeph HC, Lewis RA, Margherio RR, Nachazel DP, Weiss H, Christopherson KW, Cronin MA (1980) Retinopathy in juvenile-onset diabetes of short duration. Ophthalmology 87:1–9Google Scholar
  10. 10.
    Frost-Larsen K, Starup K (1980) Angiography in diabetic children. A follow-up. Acta Ophthalmol 58:353–360Google Scholar
  11. 11.
    Kappelhof JP, Best JA van, Valenberg PLJ van, Oosterhuis JA (1987) Inward permeability of the blood retinal barrier by fluorophotometry. Invest Ophthalmol Vis Sci 28: 665–671Google Scholar
  12. 12.
    Kernell A, Ludvigson J (1985) Blood-retinal barriers in juvenile diabetics in relation to early clinical manifestation HLA-DR types and metabolic control. Graefe's Arch Clin Exp Ophthalmol 222: 250–253Google Scholar
  13. 13.
    Klein R, Klein BE, Mors SE (1984) The Wisconsin epidemiologic study of diabetic retinopathy: II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526Google Scholar
  14. 14.
    Krogsaa B, Lund-Andersen H, Mehlsen J, Sestoft L (1986) The blood retinal barrier permeability to fluorescein in normal subjects and juvenile diabetics without retinopathy. Acta Ophthalmol 64:173–179Google Scholar
  15. 15.
    Malone JI, Van Cader TC, Edward WC (1977) Diabetic vascular changes in children. Diabetes 26:673–679Google Scholar
  16. 16.
    Olsen T, Richelsen B, Ehlers N, Beck-Nielsen H (1987) Diabetic retinopathy after 3 years' treatment with continuous subcutaneous insulin infusion (CSII). Acta Ophthalmol 65: 185–189Google Scholar
  17. 17.
    Palmberg P, Smith M, Waltman S, Krupin T, Singer P, Burgess T, Wendtland T, Achtenberg J, Cryer P, Santiago J, White N, Kilo C, Daughaday W (1981) The natural history of retinopathy in insulin-dependent juvenile-onset diabetes. Ophthalmology 88:613–618Google Scholar
  18. 18.
    Ray WA, O'Day DM (1985) Statistical analysis of multi-eye data in ophthalmic research. Invest Ophthalmol Vis Sci 26:1186–1188Google Scholar
  19. 19.
    Ray WA, O'Day DM, Head WS, Robinson R (1985) Statistical analysis for experimental models of ocular disease: continuous response measures. Curr Eye Res 5:585–597Google Scholar
  20. 20.
    Starup K, Larsen HW, Enk B, Vestermark S (1980) Fluorescein angiography in diabetic children. Acta Ophthalmol 58:347–354Google Scholar
  21. 21.
    Valenberg PLJ van, Best JA van, Bergman W, Oosterhuis JA (1986) Effect of PUVA therapy on lens of psoriasis patients as measured by fluorophotometry. Lens Res 3: 189–200Google Scholar
  22. 22.
    Weber R, Burger W, Hartman R, Hovener G, Malchus R, Oberdisse U (1986) Risk factors for the development of retinopathy in children and adolescents with type 1 (insulin dependent) diabetes mellitus. Diabetologica 29:17–22Google Scholar
  23. 23.
    Yamana Y, Ohnishi Y, Taniguchi Y, Ikeda M (1983) Early signs of diabetic retinopathy by fluorescein angiography. Jpn J Ophthalmol 27:218–227Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Els van Wirdum
    • 1
  • Jaap van Best
    • 1
  • G. Jan Bruining
    • 2
  • Carine de Beaufort
    • 2
  • Jendo Oosterhuis
    • 1
  1. 1.Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Sophia Children's Hospital, University HospitalRotterdamThe Netherlands

Personalised recommendations