Skip to main content
Log in

Early morphogenesis of the canine lens capsule, tunica vasculosa lentis posterior, and anterior vitreous body

A transmission electron microscopic study

  • Laboratory Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

This study provides transmission electron microscopic observations on the early morphogenesis (from days 25–35 post coitum) of the canine posterior lens capsule, the tunica vasculosa lentis (TVL) posterior and the anterior part of the vitreous body. The presence of an anlage of the posterior lens capsule as early as day 25, recently described histologically, was confirmed by this study. In the period from day 25 to day 35, the polar part of the posterior lens capsule develops 2–29 continuous and parallel lamellae, matching 50 nm and 1.74 μm, respectively. At these early stages, the TVL consists of capillaries that are simple endothelial tubes. From day 28 onward, these can be classified as A-1-α capillaries according to the classification of Bennett et al. [3]. In direct proximity to the lens capsule, the vitreous body contains fibrillar material with a morphological appearance similar to that of the lens capsule. This material probably derives from both the capillary endothelial cells' basal lamina and the lens capsule. Only few cellular components were observed in the anterior vitreous body. The development of the described structures is grossly in accordance with that observed in other mammalian species. The observations presented serve as a reference for studies on the pathogenesis of persistent hyperplastic tunica vasculosa lentis/persistent hyperplastic primary vitreous (PHTVL/PHPV), which is an important cause of leucocoria in children and in some dog breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiya S, Uemura Y, Tsuchida S, Azuma N, Fujita K (1986) Electron microscopic study of the developing human vitreous collagen fibrils. Ophthalmic Res 18: 199–202

    PubMed  Google Scholar 

  2. Balazs EA (1975) Fine structure of the developing vitreous. Int Ophthalmol Clin 15: 53–63

    PubMed  Google Scholar 

  3. Bennett HS, Luft JH, Hampton JC (1959) Morphological classification of vertebrate blood capillaries. Am J Physiol 196:381–390

    PubMed  Google Scholar 

  4. Boevé MH, Linde-Sipman JS van der, Stades FC (1985) Morphogenesis of persistent hyerplastic tunica vasculosa lentis/persistent hyperplastic primary vitreous (PHTVL/PHPV) in the dog. IRCS Med Sci 13:255–256

    Google Scholar 

  5. Boevé MH, Linde-Sipman JS van der, Stades FC (1988) Early morphogenesis of the canine lens, hyaloid system, and vitreous body. Anat Rec 220:435–441

    PubMed  Google Scholar 

  6. Boevé MH, Linde-Sipman JS van der, Stades FC (1988) Early morphogenesis of persistent hyperplastic tunica vasculosa lentis and primary vitreous (PHTVL/PHPV). The dog as an ontogenetic model. Invest Ophthalmol Vis Sci 29:1076–1086

    PubMed  Google Scholar 

  7. Braekevelt CR, Hollenberg MJ (1970) Comparative electron microscopical study of development of hyaloid and retinal capillaries in albino rats. Am J Ophthalmol 69:1032–1046

    PubMed  Google Scholar 

  8. Cohen AI (1961) Electron microscopic observations of the developing mouse eye: 1. Basement membranes during early development and lens formation. Dev Biol 3:297–316

    PubMed  Google Scholar 

  9. Curtis R, Barnett KC, Leon A (1984) Persistent hyperplastic primary vitreous in the Staffordshire bull terrier. Vet Rec 115:385

    PubMed  Google Scholar 

  10. Denduchis B, Kefalides NA (1970) Immunochemistry of sheep anterior lens capsule. Biochim Biophys Acta 221:357–366

    PubMed  Google Scholar 

  11. Dische Z, Zelmenis G (1965) The content and structural characteristics of the collagenous protein of rabbit lens capsules at different ages. Invest Ophthalmol 4:174–181

    Google Scholar 

  12. Fawcett DW (1981) The cell, 2nd edn. Saunders, Philadelphia, pp 104–105

    Google Scholar 

  13. Fitch JM, Mayne R, Linsenmayer TF (1983) Developmental acquisition of basement membrane heterogeneity: type IV collagen in the avian lens capsule. J Cell Biol 97:940–943

    PubMed  Google Scholar 

  14. Grant ME, Kefalides NA, Prockop DJ (1972) The biosynthesis of basement membrane collagen in embryonic chick lens: 1. Delay between the synthesis of polypeptide chains and the secretion of collagen by matrix-free cells. J Biol Chem 247:3539–3544

    PubMed  Google Scholar 

  15. Grant ME, Kefalides NA, Prockop DJ (1972) The biosynthesis of basement membrane collagen in embryonic chick lens: 2. Synthesis of a precursor form by matrix free cells and a time-dependent conversion to alpha-chains in intact lens. J Biol Chem 247:3545–3551

    PubMed  Google Scholar 

  16. Haddad R, Font RL, Reeser F (1978) Persistent hyperplastic primary vitreous. A clinicopathologic study of 62 cases and review of the literature. Surv Ophthalmol 23:123–134

    PubMed  Google Scholar 

  17. Hamming NA, Apple DJ, Gieser DK, Vygantas CM (1977) Ultrastructure of the hyaloid vasculature in primates. Invest Ophthalmol Vis Sci 16:408–415

    PubMed  Google Scholar 

  18. Hollenberg MJ, Dickson DH (1971) Scanning electron microscopy of the tunica vasculosa lentis of the rat. Can J Ophthalmol 3:301–310

    Google Scholar 

  19. Jack RL (1972) Regression of the hyaloid vascular system. An ultrastructural analysis. Am J Ophthalmol 74:261–272

    PubMed  Google Scholar 

  20. Jack RL (1972) Ultrastructural aspects of hyaloid vessel development. Arch Ophthalmol 87:427–437

    PubMed  Google Scholar 

  21. Jack RL (1972) Ultrastructure of the hyaloid vascular system. Arch Ophthalmol 87: 555–567

    PubMed  Google Scholar 

  22. Kefalides NA (1970) Comparative biochemistry of mammalian basement membranes. In: Balazs AE (ed) Chemistry and molecular biology of the intercellular matrix, vol 1. Academic Press, New York, pp 535–551

    Google Scholar 

  23. Lasansky A (1967) The pathway between hyaloid blood and retinal neurons in the toad. Structural observations and permeability to tracer substances. J Cell Biol 34:617–626

    PubMed  Google Scholar 

  24. Leon A, Curtis R, Barnett KC (1986) Hereditary persistent hyperplastic primary vitreous in the Staffordshire bull terrier. J Am Anim Hosp Assoc 22:765–774

    Google Scholar 

  25. Lerche W, Wulle KG (1969) Electron microscopic studies on the development of the human lens. Ophthalmologica 158:296–309

    PubMed  Google Scholar 

  26. Linde-Sipman JS van der, Stades FC, Wolff-Rouendaal D de (1983) Persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic primary vitreous. Pathological aspects. J Am Anim Hosp Assoc 19:791–802

    Google Scholar 

  27. Marshall J, Beaconsfield M, Rothery S (1982) The anatomy and development of the human lens and zonules. Trans Ophthalmol Soc UK 102:423–440

    PubMed  Google Scholar 

  28. Mikawa T (1965) Electron microscopic observations on the lens and tunica vasculosa lentis of the human embryo. Acta Soc Ophthalmol Jpn 69:1463–1481

    Google Scholar 

  29. Misra RP, Berman LB (1966) Studies on glomerular basement membrane: 1. Isolation and chemical analysis of normal glomerular basement membrane. Proc Soc Exp Biol Med 1126:705–710

    Google Scholar 

  30. Pirie A (1951) Composition of the ox lens capsule. Biochem J 48:368–371

    Google Scholar 

  31. Reese AB (1955) Persistent hyperplastic primary vitreous. Am J Ophthalmol 40:317–331

    PubMed  Google Scholar 

  32. Sellheyer K, Spitznas M (1987) Ultrastructure of the human posterior tunica vasculosa lentis during early gestation. Graefe's Arch Clin Exp Ophthalmol 255:377–383

    Google Scholar 

  33. Silver P, Wakely J (1984) Fine structure, origin and fate of extracellular materials in the interspace between the presumptive lens and presumptive retina of the chick embryo. J Anat 118:19–31

    Google Scholar 

  34. Stades FC (1980) Persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic primary vitreous (PHTVL/PHPV) in 90 closely related Doberman Pinschers. Clinical aspects. J Am Anim Hosp Assoc 16:739–751

    Google Scholar 

  35. Takei Y (1975) Electron microscopic studies on zonule. Jpn J Ophthalmol 19:375–385

    Google Scholar 

  36. Trelstad RL, Kang AH (1974) Collagen heterogeneity in the avian eye: lens, vitreous body, cornea and sclera. Exp Eye Res 18:395–406

    PubMed  Google Scholar 

  37. Young RM, Ocoumpaugh DE (1966) Autoradiographic studies on the growth and development of the lens capsule in the rat. Invest Ophthalmol 5:583–593

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boevé, M.H., van der Linde-Sipman, J.S. & Stades, F.C. Early morphogenesis of the canine lens capsule, tunica vasculosa lentis posterior, and anterior vitreous body. Graefe's Arch Clin Exp Ophthalmol 227, 589–594 (1989). https://doi.org/10.1007/BF02169458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02169458

Keywords

Navigation