Advertisement

Journal of Mathematical Sciences

, Volume 95, Issue 1, pp 1925–1985 | Cite as

Complexity and rank of actions in invariant theory

  • D. I. Panyushev
Article

Keywords

Invariant Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ahiezer, “Equivariant completions of homogeneous algebraic varieties by homogeneous divisors,”Ann. Glob. Anal. Geom.,1, 49–78 (1983).Google Scholar
  2. 2.
    P. Bala and R. W. Carter, “Classes of unipotent elements in simple algebraic groups, II,”Math. Proc. Cambridge Philos. Soc.,80, 1–18 (1976).Google Scholar
  3. 3.
    W. Borho and H. Kraft, “Über Bahnen und deren Deformationen bei Aktionen reduktiver Gruppen,”Comment. Math. Helv.,54, 61–104 (1979).Google Scholar
  4. 4.
    M. Brion, “Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple,”Ann. Inst. Fourier,33, 1–27 (1983).Google Scholar
  5. 5.
    M. Brion, “Représentations exceptionelles des groupes semi-simples,”Ann. Sci. École Norm. Sup., IV Sér.,18, 345–387 (1985).Google Scholar
  6. 6.
    M. Brion, “Classification des espaces homogènes sphériques,”Compos. Math., 189–208 (63).Google Scholar
  7. 7.
    M. Brion, “Parametrization and embeddings of a class of homogeneous spaces,”Contemp. Math.,131, 353–360 (1992).Google Scholar
  8. 8.
    M. Brion, D. Luna, and Th. Vust, “Espaces homogènes sphériques,”Invent. Math.,84, 617–632 (1986).Google Scholar
  9. 9.
    D. H. Collingwood and W. M. McGovern,Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York (1993).Google Scholar
  10. 10.
    A. G. Elashvili, “Canonical type and stationary subalgebras of points of general position for simple linear Lie groups,”Funkts. Analiz Prilozhen.,6, No. 1, 51–62 (1972).Google Scholar
  11. 11.
    A. G. Elashvili, “Centralizers of nilpotent elements in semisimple Lie algebras,”Tr. Tbilissk. Mat. Inst.,46, 109–132 (1975).Google Scholar
  12. 12.
    A. G. Elashvili, “Frobenius Lie algebras, II,”Tr. Tbilissk. Mat. Inst.,77, 127–137 (1985).Google Scholar
  13. 13.
    H. Flenner, “Rationale quasihomogene Singularitäten,”Arch. Math.,36, 35–44 (1981).Google Scholar
  14. 14.
    F. Grosshans, “Constructing invariant polynomials via Tschirnhaus transformations,” In:Invariant Theory (S. S. Koh, ed.),Lect. Notes Math., Vol. 1278, Springer, Berlin-Heidelberg-New York (1987), pp. 95–102.Google Scholar
  15. 15.
    R. Howe, “The first fundamental theorem of invariant theory and spherical subgroups,” In:Algebraic Groups and Their Generalizations: Classical Methods (W. J. Haboush and B. J. Parshall, eds.),Proc. Symp. Pure Math., Vol. 56, AMS, Providence (1994), pp. 333–346.Google Scholar
  16. 16.
    V. G. Kac, “Some remarks on nilpotent orbits,”J. Algebra,64, 190–213 (1980).Google Scholar
  17. 17.
    F. Knop, “Über die Glattheit von Quotientabbildungen,”Manuscr. Math.,56, 419–427 (1986).Google Scholar
  18. 18.
    F. Knop, “Weylgruppe und Momentabbildung,”Invent. Math.,99, 1–23 (1990).Google Scholar
  19. 19.
    M. Krämer, “Sphärishe Untergruppen in kompakten zusammenhängenden Liegruppen,”Compos. Math.,38, 129–153 (1979).Google Scholar
  20. 20.
    P. Littelmann, “On spherical double cones,”J. Algebra,166, 142–157 (1994).Google Scholar
  21. 21.
    D. Luna, “Sur les orbites fermées des groupes algébriques réductifs,”Invent. Math.,16, 1–5 (1972).Google Scholar
  22. 22.
    D. Luna, “Slices étales,”Bull. Soc. Math. France, Mémoire33, 81–105 (1973).Google Scholar
  23. 23.
    D. Luna, “Adhérences d'orbite et invariants,”Invent. Math.,29, 231–238 (1975).Google Scholar
  24. 24.
    D. Luna and Th. Vust, “Plongements d'espaces homogènes,”Comment. Math. Helv.,58, 186–245 (1983).Google Scholar
  25. 25.
    I. V. Mikityuk, “On integrability of invariant Hamiltonian systems with homogeneous configuration spaces,”Mat. Sb.,129, No. 3, 514–534 (1986).Google Scholar
  26. 26.
    A. L. Onishchik, “Inclusion relations between transitive compact transformation groups,”Tr. Mosk. Mat. Obshch.,11, 199–242 (1962).Google Scholar
  27. 27.
    D. I. Panyushev, “On orbit spaces of finite and connected linear groups,”Izv. Akad. Nauk SSSR, Ser. Mat.,46, No. 1, 95–99 (1982).Google Scholar
  28. 28.
    D. I. Panyushev, “Regular elements in linear representation spaces, II.”Izv. Akad. Nauk SSSR, Ser. Mat.,49, No. 5, 979–985 (1985).Google Scholar
  29. 29.
    D. I. Panyushev, “Orbits of maximal dimension of solvable subgroups in reductive algebraic groups and the reduction forU-invariants,”Mat. Sb.,132, No. 3, 371–382 (1987).Google Scholar
  30. 30.
    D. I. Panyushev, “The structure of the canonical module and the Gorenstein property for some quasihomogeneous varieties,”Mat. Sb.,137, No. 1, 76–89 (1988).Google Scholar
  31. 31.
    D. I. Panyushev, “Complexity and rank of homogeneous spaces and coisotropy representation,”Dokl. Akad. Nauk SSSR,307, No. 2, 276–279 (1989).Google Scholar
  32. 32.
    D. Panyushev, “Complexity and rank of homogeneous spaces,”GeometriæDedicata,34, 249–269 (1990).Google Scholar
  33. 33.
    D. Panyushev, “Complexity of quasiaffine homogeneous varieties,t-decompositions and affine homogeneous spaces of complexity 1,” In:Lie Groups, Their Discrete Subgroups and Invariant Theory (E. B. Vinberg, ed.),Adv. Sov. Math., Vol. 8, AMS, Providence (1992), pp. 151–166.Google Scholar
  34. 34.
    D. Panyushev, “Complexity and rank of double cones and tensor product decompositions,”Comment. Math. Helv.,68, 455–468 (1993).Google Scholar
  35. 35.
    D. Panyushev, “Complexity and nilpotent orbits,”Manuscr. Math.,83, 223–237 (1994).Google Scholar
  36. 36.
    D. Panyushev, “A restriction theorem and the Poincaré series forU-invariants,”Math. Ann.,301, 655–675 (1995).Google Scholar
  37. 37.
    D. Panyushev, “On homogeneous spaces of rank one,”Indag. Math.,6, 315–323 (1995).Google Scholar
  38. 38.
    V. L. Popov, “A stability criterion for semisimple group actions on factorial varieties,”Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 3, 523–531 (1970).Google Scholar
  39. 39.
    V. L. Popov, “Picard groups of homogeneous spaces for linear algebraic groups and homogeneous line bundles,”Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 2, 294–322 (1974).Google Scholar
  40. 40.
    R. W. Richardson, “Principal orbit type for algebraic transformation spaces in characteristic zero,”Invent. Math.,16, 6–14 (1972).Google Scholar
  41. 41.
    M. Rosenlicht, “On quotient varieties and the affine embeddings of certain homogeneous spaces,”Trans. Amer. Math. Soc.,101, 211–223 (1961).Google Scholar
  42. 42.
    T. A. Springer and R. Steinberg, “Conjugacy classes,” In:Seminar on Algebraic Groups and Related Finite Groups.Lect. Notes Math., Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York (1970), pp. 167–266.Google Scholar
  43. 43.
    R. Stanley,Combinatorics and Commutative Algebra, Progr. Math., Vol. 41, Birkhäuser, Basel (1983).Google Scholar
  44. 44.
    E. B. Vinberg, “On classification of nilpotent elements in graded Lie algebras,”Dokl. Akad. Nauk SSSR,225, No. 4, 745–748 (1975).Google Scholar
  45. 45.
    E. B. Vinberg, “The Weyl group of a graded Lie algebra,”Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 3, 488–526 (1976).Google Scholar
  46. 46.
    E. B. Vinberg, “Classification of homogeneous nilpotent elements in a semisimple graded Lie algebra,” In:Proc. of Seminar on Vector and Tensor Analysis, Vol. 19, MGU, Moscow (1979), pp. 155–177.Google Scholar
  47. 47.
    E. B. Vinberg, “Complexity of reductive group actions,”Funkts. Anal. Prilozhen.,20, No. 1, 1–13 (1986).Google Scholar
  48. 48.
    E. B. Vinberg and A. L. Onishchik,Seminar on Lie Groups and Algebraic Groups [in Russian], Nauka, Moscow (1988).Google Scholar
  49. 49.
    E. B. Vinberg and V. L. Popov, “Invariant theory,” In:Contemporary Problems in Mathematics. Fundamental Aspects, Vol. 55, VINITI, Moscow (1989), pp. 137–309.Google Scholar
  50. 50.
    E. B. Vinberg and V. L. Popov, “On a class of quasihomogeneous affine varieties,”Izv. Akad. Nauk SSSR, Ser. Mat.,36, No. 4, 749–763 (1972).Google Scholar
  51. 51.
    B. Yu. Weisfeiler, “On a class of unipotent subgroups in semisimple algebraic groups,”Usp. Mat. Nauk. 21, No. 2, 222–223 (1966).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • D. I. Panyushev

There are no affiliations available

Personalised recommendations