Skip to main content
Log in

Power geometry and four applications

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. D. Bruno,Local Methods in Nonlinear Differential Equations, Springer-Verlag, Berlin (1989).

    Google Scholar 

  2. A. D. Bruno and A. Soleev, “Local uniformization of branches of a space curve, and Newton polyhedra,”St. Petersburg Math. J.,3, No. 1, 53–82 (1992).

    Google Scholar 

  3. A. D. Bruno and A. Soleev, “First approximations of algebraic equations,”Russian Acad. Sci. Doklady. Math.,49, No. 2, 291–293 (1994).

    Google Scholar 

  4. A. D. Bruno, “The Newton polyhedron in the nonlinear analysis,”Math. Bull.,50 (1995).

  5. A. D. Bruno, “First approximations of differential equations,”Russian Acad. Sci. Doklady. Math.,49, No. 2, 334–339 (1994).

    Google Scholar 

  6. A. D. Bruno, “General approach to the asymptotic analysis of singular perturbations,” in:Dynamical Systems and Chaos (Edited by N. Aoki, K. Shiraiwa, and Y. Takahashi),1, 11–17, World Scientific, Singapore (1995).

    Google Scholar 

  7. A. Soleev and A. B. Aranson, “Computation of a polyhedron and of normal cones of its faces,” Preprint [in Russian],36,Inst. Appl. Math., Moscow (1994).

  8. V. Puiseux, “Recherches sur les fonctions algebriques,”J. Math. Pures Appl.,15, 365–480 (1850).

    Google Scholar 

  9. I. Newton, “A treatise of the method of fluxions and infinite series, with its application to the geometry of curve lines,” in:The Mathematical Works of Isaac Newton (Edited by Harry Woolf),1, 27–137, Johnson Reprint Corp., New York-London (1964).

    Google Scholar 

  10. A. D. Bruno, “The asymptotic behavior of solutions of nonlinear systems of differential equations,”Sov. Math. Dokl.,3, pp. 464–467 (1962).

    Google Scholar 

  11. S. G. Gindikin, “Energy estimates and Newton polyhedra,”Trans. Moscow Math. Soc.,31, 193–246 (1974).

    Google Scholar 

  12. A. G. Khovanskii, “Newton polyhedra (resolution of singularities),” in:J. Sov. Math.,27, 2811–2830 (1984).

    Google Scholar 

  13. A. D. Bruno, “Algorithms of nonlinear analysis,”Russian Math. Surveys,51, No. 5 (1996).

    Google Scholar 

  14. A. D. Bruno and A. Soleev, “Local uniformization of branches of an algebraic curve,” Preprint34, I.H.E.S., Paris (1990).

    Google Scholar 

  15. A. D. Bruno and V. I. Parusnikov, “Comparison of different generalizations of continued fractions,”Math. Notes,61, No. 3 (1997).

    Google Scholar 

  16. A. D. Bruno, “Normal form of differential equations,”Sov. Math. Dokl.,5, 1105–1108 (1964).

    Google Scholar 

  17. A. D. Bruno, “Analytical form of differential equations,”Trans. Moscow Math. Soc.,25, 131–288 (1971);26, 199–239 (1972).

    Google Scholar 

  18. J. E. Marsden and M. McCracken,The Hopf Bifurcation and Its Applications, Springer-Verlag, New York (1976).

    Google Scholar 

  19. A. D. Bruno, “Ways of computing a normal form,”Russian Acad. Sci. Doklady. Math.,52, 200–202 (1995).

    Google Scholar 

  20. A. D. Bruno,The Restricted 3-Body Problem, Walter de Gruyter, Berlin (1994).

    Google Scholar 

  21. M. Henon, “Sur les orbites interplanetaires qui rencontrent deux fois la terre,”Bull. Astron. Ser. 3,3, No. 3, 377–402 (1968).

    Google Scholar 

  22. A. D. Bruno, “On periodic flybys of the moon,”Celestial Mechanics,24, No. 3, 255–268 (1981).

    Google Scholar 

  23. A. D. Bruno, “A general approach to the study of complex bifurcations,”Int. Appl. Mech.,28, No. 12, 849–853 (1993).

    Google Scholar 

  24. A. D. Bruno, “Singular perturbations in Hamiltonian Mechanics,” in:Hamiltonian Mechanics (Ed. by J. Seimenis), Plenum Press, New York (1994), pp. 43–49.

    Google Scholar 

  25. M. Henon and M. Guyot, “Stability of periodic orbits in the restricted problem,” in:Periodic Orbits, Stability and Resonances (G. E. O. Giacaglia, ed.). Reidel, Dordrecht, (1970), pp. 349–374.

    Google Scholar 

  26. A. D. Bruno and A. Soleev, “The Hamiltonian truncations of a Hamiltonian system,” Preprint [in Russian],55, Inst. Appl. Math., Moscow (1995).

    Google Scholar 

  27. A. D. Bruno and A. Soleev, “Newton polyhedra and Hamiltonian systems,”Math. Bull.,50 (1995).

  28. A. D. Bruno and A. Soleev, “Hamiltonian truncated systems of a Hamiltonian system,”Russian Acad. Sci. Doklady. Math.,54, No. 1, 512–514 (1996).

    Google Scholar 

  29. A. D. Bruno, “Simple (double, multiple) periodic solutions of the restricted three-body problem in the Sun-Jupiter case,” Preprints [in Russian]66, 67, 68, Inst. Appl. Math., Moscow (1993).

    Google Scholar 

  30. A. D. Bruno, “Zero-multiple and retrograde periodic solutions of the restricted three-body problem,” Preprint [in Russian]93, Inst. Appl. Math., Moscow (1996).

    Google Scholar 

  31. A. D. Bruno and V. Yu. Petrovich, “Computation of periodic oscillations of a satellite. Singular case,” Preprint [in Russian]44, Inst. Appl. Math., Moscow (1994).

    Google Scholar 

  32. A. D. Bruno and V. P. Varin, “First (second) limit problem for the equation of oscillations of a satellite,”. Preprints [in Russian]124, 128, Inst. Appl. Math., Moscow (1995).

    Google Scholar 

  33. A. D. Bruno and V. P. Varin, “Limit problems for the equation of oscillations of a satellite,”Celestial Mechanics,65, No. 4 (1997).

    Google Scholar 

  34. A. D. Bruno and V. Yu. Petrovich, “Regularization of oscillations of a satellite on the very stretched orbit,” Preprint [in Russian]4, Inst. Appl. Math., Moscow (1994).

    Google Scholar 

  35. V. Varin, “The critical families of periodic solutions of the equation of oscillations of a satellite,” Preprint [in Russian]101, Inst. Appl. Math., Moscow (1996).

    Google Scholar 

  36. V. Varin, “The critical subfamilies of the familyK 0 of periodic solutions of the equation of oscillations of a satellite,” Preprint [in Russian], Inst. Appl. Math., Moscow (1997) (to appear).

    Google Scholar 

  37. S. Yu. Sadov, “Normal form of the equation of oscillations of a satellite in a singular case,”Math. Notes,58, No. 5, 1234–1237 (1995).

    Google Scholar 

  38. S. Yu. Sadov, “Higher approximations of the method of averaging for the equation of plane oscillations of a satellite,” Preprint [in Russian]48, Inst. Appl. Math., Moscow (1996).

    Google Scholar 

  39. G. Iooss and K. Kirchgaessner, “Water waves for small surface tension: an approach via normal form,”Proc. Royal Soc. Edinburg,122A, 267–299 (1992).

    Google Scholar 

  40. V. I. Arnol'd, “On matrices depending on parameters,”Russ. Math. Surveys,26, No. 2, 29–44 (1971).

    Google Scholar 

  41. A. Soleev and A. Aranson, “The first approximation of a reversible system of ordinary differential equations,” Preprint [in Russian]28. Inst. Appl. Math., Moscow (1995).

    Google Scholar 

  42. A. D. Bruno and A. Soleev, “Local analysis of singularity of a reversible system of ordinary differential equations: simple cases,” Preprint [in Russian]40. Inst. Appl. Math., Moscow (1995).

    Google Scholar 

  43. A. D. Bruno and A. Soleev, “Local analysis of singularity of a reversible system of ordinary differential equations: complex cases,” Preprint [in Russian]47. Inst. Appl. Math., Moscow (1995).

    Google Scholar 

  44. A. D. Bruno and A. Soleev, “Homoclinic solutions of a reversible system of ordinary differential equations,” Preprint [in Russian],54. Inst. of Appl. Math., Moscow (1995).

    Google Scholar 

  45. G. R. Belitskii, “The normal form of local mappings,”Usp. Mat. Nauk,30, No. 1, 223 (1975).

    Google Scholar 

  46. J. M. Hammersley and G. Mazarino, “Computational aspect of some autonomous differential equations,”Proc. Roy. Soc. London, Ser. A,424, 19–37 (1989).

    Google Scholar 

  47. A. D. Bruno and A. Soleev, “Local analysis of singularities of a reversible ODE system,”Russian Math. Surveys,50, No. 6, 1258–1259 (1995).

    Google Scholar 

  48. A. D. Bruno and A. Soleev, “Bifurcations of solutions in a reversible ODE system,”Russian Acad. Sci. Doklady. Math.,52, No. 3, 419–421 (1995).

    Google Scholar 

  49. A. D. Bruno and M. M. Vasil'ev, “Newton polyhedra and the asymptotic analysis of the viscous fluid flow around a flat plate,” Preprint [in Russian],44, Inst. Appl. Math., Moscow (1995).

    Google Scholar 

  50. M. Van Dyke,Perturbation Methods in Fluid Mechanics, Academic Press, New York-London (1964)

    Google Scholar 

  51. A. D. Bruno, “Bifurcation of the periodic solutions in the symmetric case of a multiple pair of imaginary eigenvalues,” in:Numerical Solution of Ordinary Differential Equations (Ed. S. S. Filippov),Selecta Math. FormerlySovietica,12, No. 1, 1–12 (1993).

  52. A. D. Bruno, “The normal form of a system, close to a Hamiltonian system,”Math. Notes,48, No. 5/6, 1100–1108 (1991).

    Google Scholar 

  53. S. Yu. Sadov, “On a dynamic system arising from a finite-dimensional approximation of the Schrödinger equation,”Math. Notes 56, No. 3, 960–971 (1994).

    Google Scholar 

  54. A. D. Bruno and S. Yu. Sadov, “Formal integral of a divergence free system,”Math. Notes,57, No. 3, 565–572 (1995).

    Google Scholar 

  55. A. D. Bruno and V. Yu. Petrovich, “Computation of periodic oscillations of a satellite,”Math. Modelling,9, No. 5 (1997).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 47, Dinamicheskie Systemy-7, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, A. Power geometry and four applications. J Math Sci 95, 2483–2512 (1999). https://doi.org/10.1007/BF02169051

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02169051

Keywords

Navigation