Numerische Mathematik

, Volume 13, Issue 3, pp 266–284 | Cite as

An extension of the Bartky-transformation to incomplete elliptic integrals of the third kind

  • R. Bulirsch


Mathematical Method Elliptic Integral Incomplete Elliptic Integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., andI. A. Stegun: Handbook of mathematical functions. New York: Dover (1965)Google Scholar
  2. 2.
    Alway, G. G.: Multhopp's influence functions and their automatic computation. Quart. J. Mech.13, 192–918 (1960).Google Scholar
  3. 3.
    Bartky, W.: Numerical calculation of a generalized complete elliptic integral. Rev. Mod. Phys.10, 264–269 (1938).Google Scholar
  4. 4.
    Bulirsch, R.: Numerical calculation of elliptic integrals and elliptic functions I, II. Numer. Math.7, 78–90, 353–354 (1965).Google Scholar
  5. 5.
    ——, u.J. Stoer: Darstellung von Funktionen in Rechenautomaten. Contrib. to „Mathematische Hilfsmittel des Ingenieurs III”, Editors:R. Sauer, I. Szábo. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  6. 6.
    — Numerical calculation of elliptic integrals and elliptic functions III. To appear in Numer. Math.Google Scholar
  7. 7.
    Byrd, P. F., andM. D. Friedman: Handbook of elliptic integrals for engineers and physicists. Berlin-Göttingen-Heidelberg: Springer 1954.Google Scholar
  8. 8.
    Curtis, A. R.: N. P. L. Math. Tables, Vol. 7: Tables of Jacobian elliptic functions whose arguments are rational fractions of the quarter period. London: Her Majesty's Stationary Office 1964.Google Scholar
  9. 9.
    Hofsommer, D. J., andR. P. van de Riet: On the numerical calculation of elliptic integrals of the first and second kind and the elliptic functions of Jacobi. Num. Math.5, 291–302 (1963)Google Scholar
  10. 10.
    Jahnke-Emde-Lösch: Tafeln höherer Funktionen; Tables of higher functions. Stuttgart: Teubner; New York: McGraw-Hill 1960.Google Scholar
  11. 11.
    King, A. V.: On the direct numerical calculation of elliptic functions and integrals. London: Cambr. Un. Press 1924.Google Scholar
  12. 12.
    Tölke, F.: Praktische Funktionenlehre II, III. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  13. 13.
    Fettis, H. E.: Calculation of elliptic integrals of the third kind by means of Gauss' transformation. Math. Comp.19, 97–104 (1965).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • R. Bulirsch
    • 1
  1. 1.Mathematisches Institut der Universität KölnWeyertal 86

Personalised recommendations