Numerische Mathematik

, Volume 15, Issue 2, pp 100–108 | Cite as

Proving inverse-positivity of linear operators by reduction

  • Johann Schröder


Linear Operator Mathematical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collatz, L.: Aufgaben monotoner Art. Archiv Math.3, 365–376 (1952).Google Scholar
  2. 2.
    Schröder, J.: Differential inequalities and error bounds. Error in digital computation, Vol. 2 (Ed. L. B. Rall), pp. 141–179. John Wiley 1965Google Scholar
  3. 3.
    - Monotonie-Aussagen bei quasilinearen elliptischen Differentialgleichungen und anderen Problemen. Numerische Mathematik, Differentialgleichungen, Approximationstheorie (Ed. L. Collatz and G. Meinardus), pp. 341–361. Birkhäuser 1968.Google Scholar
  4. 4.
    ——: On linear differential inequalities. J. Math. Anal. Appl.22, 188–216 (1968).Google Scholar
  5. 5.
    Trottenberg, U.: Über nichtnegative Greensche Funktionen bei gewöhnlichen Differentialgleichungen. Diplomarbeit, Universität Köln, 1969Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Johann Schröder
    • 1
  1. 1.Mathem. Institut der Universität KölnKöln 41

Personalised recommendations