Numerische Mathematik

, Volume 10, Issue 1, pp 30–41 | Cite as

Characterizations of certain classes of norms

  • David Gries


Mathematical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bauer, F. L.: On the field of values subordinate to a norm. Numer. Math.4, 103–113 (1962).Google Scholar
  2. [1a]
    Witzgall, C.: Appendix to [1].Google Scholar
  3. [2]
    Bauer, F. L., andC. T. Fike: Norms and exclusion theorems. Numer. Math.2, 137–141 (1960).Google Scholar
  4. [3]
    ——,J. Stoer, andC. Witzgall: Absolute and monotonic norms. Numer. Math.3, 257–264 (1961).Google Scholar
  5. [6]
    Eggleston, H. G.: Convexity. Cambridge: Cambridge University Press 1958.Google Scholar
  6. [7]
    Gries, D.: Über einige Klassen von Normen. Diss. Technische Hochschule München, Juni 1966.Google Scholar
  7. [8]
    —, andJ. Stoer: Some results on fields of values of a matrix. Rechenzentrum der Technischen Hochschule München. Bericht Nr. 6607.Google Scholar
  8. [9]
    Nirschl, N., andH. Schneider: The Bauer fields of values of a matrix. Numer. Math.6, 355–365 (1964).Google Scholar
  9. [10]
    Ostrowski, A.: Über Normen von Matrizen. Math. Z.63, 2–18 (1955)Google Scholar
  10. [11]
    — On some metrical properties of operator matrices and matrices partitioned into blocks. MRC Technical Summary Report No. 138. University of Wisconsin 1960.Google Scholar
  11. [12]
    Sallin, E. A.: Bounds for iterates, inverses and spectral variation of non-normal matrices. Ph.D. Diss. University of California, Los Angeles 1963Google Scholar
  12. [13]
    Stoer, J., andC. Witzgall: Transformation by diagonal matrices in a normed space. Numer. Math.4, 158–171 (1962).Google Scholar
  13. [14]
    —— On the characterization of least upperbound norms in matrix space. Numer Math.6, 302–314 (1964).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • David Gries
    • 1
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA

Personalised recommendations