Numerische Mathematik

, Volume 10, Issue 1, pp 30–41 | Cite as

Characterizations of certain classes of norms

  • David Gries
Article

Keywords

Mathematical Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bauer, F. L.: On the field of values subordinate to a norm. Numer. Math.4, 103–113 (1962).Google Scholar
  2. [1a]
    Witzgall, C.: Appendix to [1].Google Scholar
  3. [2]
    Bauer, F. L., andC. T. Fike: Norms and exclusion theorems. Numer. Math.2, 137–141 (1960).Google Scholar
  4. [3]
    ——,J. Stoer, andC. Witzgall: Absolute and monotonic norms. Numer. Math.3, 257–264 (1961).Google Scholar
  5. [6]
    Eggleston, H. G.: Convexity. Cambridge: Cambridge University Press 1958.Google Scholar
  6. [7]
    Gries, D.: Über einige Klassen von Normen. Diss. Technische Hochschule München, Juni 1966.Google Scholar
  7. [8]
    —, andJ. Stoer: Some results on fields of values of a matrix. Rechenzentrum der Technischen Hochschule München. Bericht Nr. 6607.Google Scholar
  8. [9]
    Nirschl, N., andH. Schneider: The Bauer fields of values of a matrix. Numer. Math.6, 355–365 (1964).Google Scholar
  9. [10]
    Ostrowski, A.: Über Normen von Matrizen. Math. Z.63, 2–18 (1955)Google Scholar
  10. [11]
    — On some metrical properties of operator matrices and matrices partitioned into blocks. MRC Technical Summary Report No. 138. University of Wisconsin 1960.Google Scholar
  11. [12]
    Sallin, E. A.: Bounds for iterates, inverses and spectral variation of non-normal matrices. Ph.D. Diss. University of California, Los Angeles 1963Google Scholar
  12. [13]
    Stoer, J., andC. Witzgall: Transformation by diagonal matrices in a normed space. Numer. Math.4, 158–171 (1962).Google Scholar
  13. [14]
    —— On the characterization of least upperbound norms in matrix space. Numer Math.6, 302–314 (1964).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • David Gries
    • 1
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA

Personalised recommendations