Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 188, Issue 4, pp 243–253 | Cite as

Uranyl ion luminescence quenching with benzene derivatives and related compounds. Linear free energy relationship

  • M. S. Sidhu
  • Anju
  • P. V. K. Bhatia
Article

Abstract

Irradiation of uranyl ion with light of wavelength λ=345 nm to singlet state, through vibrational relaxation populates the lowest excited triplet state from where it emits luminescence emission at 486, 506, 535 nm. Elongation and weakening of uranium-oxygen multiple bonds is evident from the lower stretching frequency (701.15 cm−1) in the excited state relative to the ground state (942.5 cm−1). Series of aromatic molecules including benzene derivatives, aromatic hydrocarbons and heterocyclic molecules very efficiently quench uranyl ion luminescence through nonradiative donor-acceptor complex formation. Increasing inductive effect, resonance phenomena and extension of aromatic π-electron cloud determine the order of Stern-Volmer constant to measure their quenching action.

Keywords

Triplet State Singlet State Multiple Bond Aromatic Molecule Resonance Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Rabinowitch, R.L. Belford, Spectroscopy and Photochemistry of Uranyl Compounds, Pergamon Press, Oxford, 1964.Google Scholar
  2. 2.
    H.D. Burrows, T.J. Kemp,Chem. Soc. Rev., 3 (1974) 139; M.E.D.G. Azenha, H.D. Burrows, S.J. Formosinho, M.G.M. Miguel, A.P. Daramanyan, I.V. Khudyakov,J. Lumin., 48 (1991) 522.Google Scholar
  3. 3.
    V. Balzani, F. Bolleta, M.T. Gandolffi, M. Maestri,Top. Curr. Chem., 75 (1978) 1; P.E. Neilsen, C. Hiort, S.H. Sonnichsev, O. Bucharott, O. Duhl, B. Norden,J. Am. Chem. Soc., 114 (1992) 4967.Google Scholar
  4. 4.
    H.D. Burrows, A.C. Cardoso, S.J. Formosinho, A.M.P.C. Gil, M.G.M. Miguel,J. Photochem. Photobiol. A: Chem., 68 (1992) 279;J. Chem. Soc. Faraday Trans. I, 80 (1984) 1735; H.D. Burrows, S.J. Formosinho, P.M. Saraiva,J. Photochem. Photobiol. A: Chem. 63 (1992) 67.Google Scholar
  5. 5.
    H.G. Brittain, D.L. Perry,J. Phys. Chem., 85 (1981) 3073; C.D. Flint, P. Sharma, P.a. Tanner,J. Phys. Chem., 86 (1982) 1921; D. Ke Huci Yang, G.D. Rayson,App. Spectrosc., 46 (1992) 1376.Google Scholar
  6. 6.
    R. Matsushima, S. Sakuraba,Bull. Chem. Soc. Jap., 43 (1970) 1259; 44 (1971) 2415;J. Am. Chem. Soc., 93 (1971) 5421.Google Scholar
  7. 7.
    M. Ahmad, A. Cox, T.J. Kemp, Q. Sultana,J. Chem. Soc. Perkin II, (1975) 1867.Google Scholar
  8. 8.
    Y.Y. Park, H. Tomiyasu,J. Photochem. Photobiol. A.: Chem., 64 (1992) 25.Google Scholar
  9. 9.
    T.J. Kemp, M.A. Shand,Inorg. Chim. Acta., 114 (1986) 215.Google Scholar
  10. 10.
    G. Sergeeva, V. Chibisov, L. Levshin, A. Karyakin,J. Chem. Soc., Chem. Comm., (1974) 159.Google Scholar
  11. 11.
    Y.Y. Park, V. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, H. Tomiyasu,J. Chem. Soc. Faraday Trans., I, 86 (1990) 55; P. Zhou, Z.L. Wang, Y.Z. Xu, L. Zhang, Y.B. Wang,J. Radioanal. Nucl. Chem., 175 (1993) 81.Google Scholar
  12. 12.
    G.M. Karamer, M.B. Dines, A. Kaldoc, R. Hall, D. McClure,Inorg. Chem., 20 (1981) 1421.Google Scholar
  13. 13.
    M. Deschauz, M.D. Marcantonatos,J. Inorg. Nucl. Chem., 42 (1981) 361; M.D. Marcantonatos,J. Chem. Soc. Faraday Trans. I, 76 (1980) 1093.Google Scholar
  14. 14.
    S.S. Sandhu, M.S. Sidhu, R.J. Singh,J. Photochem., 39 (1987) 257;J. Photochem. Photobiol. A: Chem., 49 (1989) 213; M.S. Sidhu, K.B. Kohli, P.V.K. Bhatia, S.S. Sandhu,J. Radioanal. Nucl. Chem., Lett., 187 (1994) 375.Google Scholar
  15. 15.
    S.S. Sandhu, A.S. Sarpal, A.S. Brar,Indian J. Chem., 16A (1978) 587; 18A (1979) 19; 19A (1980) 413, 902.Google Scholar
  16. 16.
    S.S. Sandhu, K.B. Kohli, A.S. Brar,Inorg. Chem., 23 (1984) 3609; S.S. Sandhu, R.J. Singh, S.K. Chawla,J. Photochem. Photobiol. A; Chem., 52 (1990) 65.Google Scholar
  17. 17.
    H.B. Ambroz, K.R. Butter, T.J. Kemp,Faraday Discuss. Chem. Soc., 78 (1984) 107; T.J. Kemp, M.A. Shand,Inorg. Chem., 25 (1986) 3840.Google Scholar
  18. 18.
    C.K. Rofer DePoorter, G.L. DePoorter,J. Inorg. Nucl. Chem., 39 (1977) 631; 41 (1979) 215.Google Scholar
  19. 19.
    G. Cauzzo, G. Gennari, G. Giacometti, G.C. Agostini, A. Gambaro,Inorg. Chim. Acta, 32 (1979) 45.Google Scholar
  20. 20.
    R. Matsushima, S. Sakuraba,J. Am. Chem. Soc., 93 (1971) 7143; R. Matsushima,J. Am. Chem. Soc., 94 (1972) 6010.Google Scholar
  21. 21.
    S.P. McGlynn, J.K. Smith,J. Mol. Spectrosc., 6 (1964) 164.Google Scholar
  22. 22.
    R. Matsushima, K. Mori, M. Suzuki,Bull. Chem. Soc. Jap., 49 (1976) 38.Google Scholar
  23. 23.
    C. Hansch, A. Leo, R.W. Taft,Chem. Rev., 91 (1991) 165.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • M. S. Sidhu
    • 1
  • Anju
    • 1
  • P. V. K. Bhatia
    • 1
  1. 1.Department of ChemistryGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations