Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 137, Issue 2, pp 113–125 | Cite as

The effect of γ-irradiation on the thermal decomposition of magnesium bromate

  • S. M. K. Nair
  • P. Daisamma Jacob
Article

Abstract

The thermal decomposition of γ-irradiated magnesium bromate was studied by dynamic thermogravimetry. The reaction order, activation energy, frequency factor and entropy of activation were calculated by the Coats-Redfern equation and were compared with those of the unirradiated salt. Irradiation enhances the decomposition and the effect increases with irradiation dose. The activation energy decreases on irradiation. The mechanism for the decomposition of unirradiated and irradiated magnesium bromate follows the Avrami model equation, 1-/1-∞/1/3=kt, and the rate-controlling, process is a phase boundary reaction assuming spherical symmetry.

Keywords

Entropy Magnesium Activation Energy Inorganic Chemistry Irradiation Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M.K. Nair, C. James,Thermochim. Acta, 96 /1985/ 27.CrossRefGoogle Scholar
  2. 2.
    S.M.K. Nair, K.K. Malayil, P.D. Jacob,Thermochim. Acta /in press/.Google Scholar
  3. 3.
    S.M.K. Nair, P.D. Jacob,Thermochim. Acta /communicated/.Google Scholar
  4. 4.
    S.R. Mohanty,J. Sci. Res., Banaras Hindu University, 12 /1961/ 299.Google Scholar
  5. 5.
    S.R. Mohanty, V.M. Pandey,J. Sci. Ind. Res., 34 /1975/ 196.Google Scholar
  6. 6.
    J.W. Chase, G.E. Boyd,J. Phys. Chem., 70 /1966/ 1031.Google Scholar
  7. 7.
    J. Sestak, G. Berggren,Thermochim. Acta, 3 /1971/ 1.CrossRefGoogle Scholar
  8. 8.
    V. Satava,Thermochim. Acta, 2 /1971/ 423.CrossRefGoogle Scholar
  9. 9.
    W.W. Wendlandt, Thermal Methods of Analysis, J. Wiley and Sons, 1974, p. 45.Google Scholar
  10. 10.
    G.M. Bancroft, H.D. Gesser,J. Inorg. Nucl. Chem., 27 /1965/ 1545.CrossRefGoogle Scholar
  11. 11.
    H.T.S. Britton, H.G. Britton,J. Chem. Soc., /1952/ 3887.Google Scholar
  12. 12.
    G.E. Boyd, E.W. Graham, Q.V. Larson,J. Phys. Chem., 66 /1962/ 300.Google Scholar
  13. 13.
    A.W. Coats, J.P. Redfern,Nature /London/, 201 /1964/ 68.Google Scholar
  14. 14.
    E.S. Freeman, B. Carroll,J. Phys. Chem., 62 /1958/ 394.CrossRefGoogle Scholar
  15. 15.
    H.H. Horowitz, G. Metzger,Anal. Chem., 35 /1963/ 1464.CrossRefGoogle Scholar
  16. 16.
    S.R. Dharwadkar, M.D. Karkhanavala /Eds. R.F. Schwenker, Jr., P.D. Garns/, in: Thermal Analysis, Vol. 2. Proc. 2nd ICTA, Worcester, MA, 1968. Academic Press, New York 1969, pp. 1049–1069.Google Scholar
  17. 17.
    N.A. Lange, G.M. Forker /Eds./, Handbook of Chemistry, 10th ed., McGraw-Hill, New York, 1961, pp. 266–267.Google Scholar
  18. 18.
    J. Jach,J. Phys. Chem. Solids, 24 /1963/ 63.CrossRefGoogle Scholar
  19. 19.
    E.J. Prout,J. Inorg. Nucl. Chem., 7 /1958/ 368.CrossRefGoogle Scholar
  20. 20.
    S.D. Bhattmaisra, S.R. Mohanty,Rad. Eff., 29 /1976/ 41.Google Scholar
  21. 21.
    S.M.K. Nair, C. James,Thermochim. Acta, 78 /1984/ 357.CrossRefGoogle Scholar
  22. 22.
    S.M.K. Nair, C. James,Thermochim. Acta, 83 /1985/ 387.CrossRefGoogle Scholar
  23. 23.
    J. Sestak,Thermochim. Acta, 3 /1971/ 150.CrossRefGoogle Scholar
  24. 24.
    M. Avrami,J. Chem. Phys., 7 /1939/ 103.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • S. M. K. Nair
    • 1
  • P. Daisamma Jacob
    • 1
  1. 1.Department of ChemistryUniversity of CalicutKeralaIndia

Personalised recommendations