Journal of Radioanalytical and Nuclear Chemistry

, Volume 214, Issue 6, pp 469–478 | Cite as

Mössbauer studies on thermal decomposition of some alkali tris (malonato) ferrate (III) tetrahydrates

  • B. S. Randhawa
  • Sandeep Kaur
  • P. S. Bassi


Thermal decomposition of some alkali tris (malonato) ferrate (III) tetrahydrates, i. e. M3 [Fe(CH2C2O4)3]·4H2O (M=Na, K) has been studied in the temperature range of 433–973 K in static air atmosphere using Mössbauer, IR and TG-DTG-DTA techniques. Mössbauer spectra are reported at different stages to study the mechanism of decomposition. The anhydrous complex decomposed into α-Fe2O3 of varying particle sizes and alkali metal malonate/carbonate in successive stages. In the final stage of remixing of cations, a solid state reaction between α-Fe2O3 and alkali metal carbonate/oxide gives fine particles of the respective ferrites at temperatures lower than for oxalate precursor or even for ceramic method. Thermal stability obeys the order: sodium > potassium > lithium tris(malonato) ferrate (III).


Particle Size 4H2O Lithium Ferrite Thermal Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Goldman, Proc. 5th Int. Conf. on Ferrites, Jan. 10–13, 1989, Bombay (India), p. 13.Google Scholar
  2. 2.
    B. S. Randhawa, Sandeep Kaur, P. S. Bassi,Indian J. Chem. 28 A (1989) 463.Google Scholar
  3. 3.
    P. S. Bassi, B. S. Randhawa, Sandeep Kaur, Proc. 5th Int. Conf. on Ferrites, Jan. 10–13, 1989 Bombay (India), p. 67.Google Scholar
  4. 4.
    B. S. Randhawa, P. S. Bassi, Sandeep Kaur,J. Radioanal. Nucl. Chem. Lett., 188 (1994) 279.Google Scholar
  5. 5.
    P. S. Bassi, B. S. Randhawa, Sandeep Kaur,Hyperfine Interactions, 28 (1986) 745.Google Scholar
  6. 6.
    A. Vértes, L. Korecz, K. Burger, Mössbauer Spectroscopy, Elsevier, New York, 1979, p. 47.Google Scholar
  7. 7.
    P. K. Gallagher, C. R. Kurkjian,Inorg. Chem., 5 (1966) 214.Google Scholar
  8. 8.
    O. C. Kistner, A. W. Sunyar,Phys. Rev. Lett., 4 (1960) 412.Google Scholar
  9. 9.
    R. A. Nyguist, R. O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, New York, 1971.Google Scholar
  10. 10.
    T. Birchall, N. N. Greenwood, A. F. Reid,J. Chem. Soc. A., (1969) 2382.Google Scholar
  11. 11.
    R. G. Wyckoff Crystal Structures Interscience Publ. Inc., New York, Ind Edi, 1964, Vol. 2, p. 296.Google Scholar
  12. 12.
    F. A. Miller, C. H. Wilkins,Anal. Chem., 24 (1952) 1253.Google Scholar
  13. 13.
    T. Ichida,Bull. Chem. Soc., Japan, 46 (1973) 79.Google Scholar
  14. 14.
    D. Broadbent, D. Dollimore, J. Dollimore,J. Chem. Soc. A, (1967), 451.Google Scholar
  15. 15.
    D. Barb, D. Mihaila-Tarabasanu, L. Diamandescu, C. Turcanu, I. Florescu,Radiochem. Radioanal. Lett., 33 (1978) 373.Google Scholar
  16. 16.
    A. S. Brar, B. S. Randhawa,J. Solid State Chem., 58 (1985) 153.Google Scholar
  17. 17.
    T. Ichida, T. Shinjo, Y. Bando, T. Takada,J. Phys. Soc. Japan, 29 (1970) 795, 1109.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • B. S. Randhawa
    • 1
  • Sandeep Kaur
    • 1
  • P. S. Bassi
    • 1
  1. 1.Department of ChemistryGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations