Numerische Mathematik

, Volume 14, Issue 3, pp 219–231 | Cite as

TheQ R algorithm for real hessenberg matrices

  • R. S. Martin
  • G. Peters
  • J. H. Wilkinson
Handbook Series Linear Algebra


Mathematical Method Hessenberg Matrice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Francis, J. C. F.: TheQ R transformation — a unitary analogue to theLR transformation. Computer journal4, 265–271 and 332-345 (1961/62).Google Scholar
  2. 2.
    Householder, A. S.: Unitary triangularization of a non-symmetric matrix. J. Assoc. Comp. Mach.5, 339–342 (1958).Google Scholar
  3. 3.
    —— Bauer, F. L.: On certain methods for expanding the characteristic polynomial. Numerische Math.1, 29–37 (1959)Google Scholar
  4. 4.
    Kublanovskaya, V. N.: On some algorithms for the solution of the complete eigenvalue problem. Zh. Vych. Mat.1, 555–570 (1961).Google Scholar
  5. 5.
    Martin, R. S., Wilkinson, J. H.: Similarity reduction of a general matrix to Hessenberg form. Numerische Math.12, 349–368 (1968).Google Scholar
  6. 6.
    Parlett, B. N.: Global convergence of the basicQR algorithm on Hessenberg matrices. Math. of Computation22, 803–817 (1968).Google Scholar
  7. 7.
    —— Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numerische Math.13, 293–304 (1969)Google Scholar
  8. 8.
    Wilkinson, J. H.: The algebraic eigenvalue problem. London: Oxford University Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • R. S. Martin
  • G. Peters
  • J. H. Wilkinson
    • 1
  1. 1.National Physical LaboratoryTeddington, MiddlesexGreat Britain

Personalised recommendations