Numerische Mathematik

, Volume 14, Issue 3, pp 219–231 | Cite as

TheQ R algorithm for real hessenberg matrices

  • R. S. Martin
  • G. Peters
  • J. H. Wilkinson
Handbook Series Linear Algebra


Mathematical Method Hessenberg Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Francis, J. C. F.: TheQ R transformation — a unitary analogue to theLR transformation. Computer journal4, 265–271 and 332-345 (1961/62).Google Scholar
  2. 2.
    Householder, A. S.: Unitary triangularization of a non-symmetric matrix. J. Assoc. Comp. Mach.5, 339–342 (1958).Google Scholar
  3. 3.
    —— Bauer, F. L.: On certain methods for expanding the characteristic polynomial. Numerische Math.1, 29–37 (1959)Google Scholar
  4. 4.
    Kublanovskaya, V. N.: On some algorithms for the solution of the complete eigenvalue problem. Zh. Vych. Mat.1, 555–570 (1961).Google Scholar
  5. 5.
    Martin, R. S., Wilkinson, J. H.: Similarity reduction of a general matrix to Hessenberg form. Numerische Math.12, 349–368 (1968).Google Scholar
  6. 6.
    Parlett, B. N.: Global convergence of the basicQR algorithm on Hessenberg matrices. Math. of Computation22, 803–817 (1968).Google Scholar
  7. 7.
    —— Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numerische Math.13, 293–304 (1969)Google Scholar
  8. 8.
    Wilkinson, J. H.: The algebraic eigenvalue problem. London: Oxford University Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • R. S. Martin
  • G. Peters
  • J. H. Wilkinson
    • 1
  1. 1.National Physical LaboratoryTeddington, MiddlesexGreat Britain

Personalised recommendations