Die Kulturpflanze

, Volume 35, Issue 1, pp 53–97 | Cite as

Numerisch-taxonomische Studien anTriticum L. undAegilops L. Zur Theorie der Klassifizierung von Kulturpflanzen

  • Jürgen Schultze-Motel
Übersichtsdarstellungen

Zusammenfassung

Numerisch-taxonomische Methoden sind bisher bei Kulturpflanzen nur in beschränktem Maße angewendet worden.

Anhand einerTriticum aestivum-Kollektion aus dem Iran (infraspezifischer Bereich) und eines Materials vonTriticum undAegilops (Art- und Gattungsbereich) wurde der Einfluß verschiedener Faktoren und Methoden auf die Systembildung geprüft. Die dabei verwendete grundsätzliche Verfahrensstrategie (Bestimmung der Ähnlichkeit mit Ähnlichkeitskoeffizienten und Anwendung verschiedener agglomerativer Clustermethoden) führt zwar in den meisten Fällen zu ± brauchbaren Ergebnissen, entspricht jedoch nicht dem Vorgang, den der Biologe bei der Klassifizierung durchführt. Daher wird eine neuentwickelte divisive Clustermethode empfohlen, die diesen Vorgang genau simuliert.

Einige Grundforderungen der numerischen Taxonomie (Benutzung möglichst vieler Merkmale und deren prinzipielle Gleichwertigkeit) scheinen bei Kulturpflanzen nicht durchführbar zu sein. Die überwiegende Verwendung quantitativer Merkmale führt zu Verzerrungen in den Dendrogrammen.

Die numerische Taxonomie erlaubt nicht nur die Aufstellung mehrerer Systeme durch Verwendung verschiedener Methoden (angewendet auf ein gegebenes Material), sondern auch die objektive Beurteilung der resultierenden Systeme durch mathematische Verfahren. Somit ist eine Optimierung der Systembildung möglich.

Selbst wenn für die Anwendung der numerischen Taxonomie bei Kulturpflanzen noch keine Standardmethoden existieren und die weitere theoretische Durchdringung ihrer Methodik erforderlich ist, so wird die numerische Taxonomie als ein wirkungsvolles Verfahren bei der Klassifizierung von Kulturpflanzen angesehen. Ihre Anwendung in umfangreichen Kulturpflanzensortimenten mit Datenbanken erscheint geeignet, deren Bestände besser als bisher zu erschließen.

Numerical taxonomic studies inTriticum L. andAegilops L. A contribution to the theory of classifying cultivated plants

Summary

Up till now numerical taxonomic methods have been applied to cultivated plants only to a limited extent.

Using a collection of common wheat from Iran (infraspecific level) and a material ofTriticum andAegilops (species and genus level) the influence of different factors and methods to the system formation has been investigated. The principal strategy used therewith (evaluation of similarity by means of similarity coefficients and applying different agglomerative clustering methods) in most cases gives more or less useful results but does not correspond to the practice of the biologist when classifying a material. Therefore a newly developed divisive clustering method is recommended which is an exact simulation of this practice.

Some premises of numerical taxonomy (using as many characters as possible and their principal equality) are evidently not accomplishable to cultivated plants. The predominant use of quantitative characters results in distortions in the dendrograms.

The numerical taxonomy permits the formation of several systems by using different methods (applied to a given material) as well as the objective evaluation of the resulting systems by means of mathematical procedures. Thus it is possible to optimize the system formation.

For applying numerical taxonomy to cultivated plants no standard methods exist up till now and further investigations of its theoretical backgrounds are necessary. Nevertheless the numerical taxonomy is believed to be a useful tool in classifying cultivated plants. Its application to great assortments of cultivated plants with data banks seems fit for marking better accessible their contents.

Числовая таксономия на примереTriticum L. иAegilops L. О теории классификации культурных растений

Краткое содержание

До сих иор применение методов числовой таксономии к культурным растениям происходило в органиченном масштабе.

На примере коллекцииTriticum aestivum из Ирана (внутривидовой уровень) и некоторых материаловTriticum иAegilops (видовой и родовой уровень) проверили влияние различных факторов и методов на формирование системы. Использованная при этом принцилиальная методологическая стратегия (определение сходства с помощью коэ;ффициентов сходства и иснользование различных агломеративных методов груниировок), хотя и вела, в большинстве случаев, к ± приемлемым результатам, однако не соответствовала процессу, осуществляемому биологом при классификации. Поэ;тому предлагается новый, усоверщенствованный метод „кластера“, который в точности симулирует этот процесс.

Очевидно, некоторые основные требования числовой таксономии, как-то: использование по возможности большого числа признаков и нх принциниальная эквивалентность — неприменимы к культурным растениям. Преобладающее иснользование количественных признаков ведет к искажениям в дендрограммах.

Числовая таксономия позволяет не только сформировать несколько систем, применяя различные методы к данномы материалу, но и, на основе математических выкладок, дать обьективныю оценку результирующим системам. Этим самым возможна оптимизация формирования системы.

Даже если не существует стандартных методов для применения числовой таксономии к культурным растениям и требуется дальнейшее теоретическое обоснование этих методов, все-таки числовая таксономия считается эффективным процессом при классификации культурных растений. Эё использование в обширных сортиментах культурных растений с информационными банками, кажется, наиболее подходящим, с тем чтобы более лучше охватить их фонды.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Attay, M., 1967: Botanical and agricultural study of the Iranian indigenous wheat populations. — Inf. Bull. Near Eeast Wheat & Barley Impr. & Prod. Proj.4 (1), 1–10.Google Scholar
  2. Barnett, J. A., andR. J. Pankhurst, 1974: A New Key to the Yeasts. A key for identifying yeasts based on physiological tests only. — North-Holland Publishing Company, Amsterdam, London, American Elsevier Publishing Co., Inc., New York, XIII + 273 pp.Google Scholar
  3. Barrett, H. C., andA. M. Rhodes, 1976: A numerical taxonomic study of affinity relationships in cultivatedCitrus and its close relatives. — Syst. Bot.1, 105–136.Google Scholar
  4. Baum, B. R., 1974a: Article 36 and numerical classification. — Taxon23, 652–653.Google Scholar
  5. , 1974b: Classification of the oat species (Avena, Poaceae) using various taximetric methods and an information-theoretic model. — Can. J. Bot.52, 2241–2262.Google Scholar
  6. , 1976: Weighting character-states. — Taxon25, 257–260.Google Scholar
  7. , 1977: Oats: wild and cultivated. A monograph of the genusAvena L. (Poaceae). — Biosystematics Research Institute, Canada Department of Agriculture, Research Branch, Ottawa, Ontario, Canada, Monograph No.14, XVI + 463 pp.Google Scholar
  8. , 1981: Taxonomy of the infraspecific variability of cultivated plants. — Kulturpflanze29, 209–239.Google Scholar
  9. , 1986: Computer methods in infraspecific taxonomy of wild and cultivated plants. (pp. 239–254). In:B. T. Styles (ed.), Infraspecific Classification of Wild and Cultivated Plants. — The Systematics Association, Special Volume No.29, Clarendon Press, Oxford, XIV + 435 pp.Google Scholar
  10. , andR. B. Phillips, 1984: A bibliography of numerical phenetic studies in systematic botany. — Ann. Missouri Bot. Gard.71, 1044–1060.Google Scholar
  11. Bisby, F. A., 1970: The evaluation and selection of characters in Angiosperm taxonomy: an example fromCrotalaria. — New Phytotologist69, 1149–1160.Google Scholar
  12. , andK. W. Nicholls, 1977: Effects of varying character definitions on classification of Genisteae (Leguminosae). — Bot. J. Linn. Soc.74, 97–121.Google Scholar
  13. Blackwelder, R. E., 1967: A critique of numerical taxonomy. — Syst. Zool.16, 64–72.Google Scholar
  14. Blashfield, R. K., andM. S. Aldenderfer, 1978: The literature on cluster analysis. — Multiv. Behav. Res.13, 271–295.Google Scholar
  15. Bogyo, T. P., andE. Porceddu, 1975: The use of discriminant functions in the numerical taxonomy of durum wheat. (pp. 225–246). In:G. T. Scarascia Mugnozza (ed.), Genetics and Breeding of Durum wheat. Proceedings of a Symposium organized by the Section Cereals of the European Association for Research on Plant Breeding (Eucarpia) and by the Plant Breeding Institute of the University of Bari, and held in Bari, 14–18 May, 1973.Google Scholar
  16. Brenan, J. P. M., R. Ross, andJ. T. Williams (eds.), 1975: Computers in Botanical Collections. — Plenum Press, London and New York, X + 216 pp.Google Scholar
  17. Burt, R. L., L. A. Edye, W. T. Williams, B. Grof, andC. H. L. Nicholson, 1971: Numerical analysis of variation patterns in the genusStylosanthes as an aid to plant introduction and assessment. — Aust. J. agric. Res.22, 737–757.Google Scholar
  18. Cerulla, M., 1984: Eine mathematisch-rechentechnische Verfahrensstrategie zur multivariaten Analyse in der numerischen Taxonomie. — Problemdokumentation, VEB Datenverarbeitungszentrum Schwerin, Betr. Reg. Nr. 1966, 20 pp.Google Scholar
  19. Clifford, H. T., andW. Stephenson, 1975: An Introduction to Numerical Classification. — Academic Press, New York — San Francisco — London, XII + 229 pp.Google Scholar
  20. , andW. T. Williams, 1973: Classificatory dendrograms and their interpretation. — Aust. J. Bot.21, 151–162.Google Scholar
  21. Crovello, Th. J., 1968a: The effect of missing data and of two sources of character values on a phenetic study of the willows of California. — Madroño19, 301–315.Google Scholar
  22. , 1986b: The effect of change of number of OTU's in a numerical taxonomic study. — Brittonia20, 346–367.Google Scholar
  23. , 1969: Effect of change of characters and of number of characters in numerical taxonomy. — Amer. Midland Naturalist81, 68–86.Google Scholar
  24. Duncan, T., andB. R. Baum, 1981: Numerical phenetics: its uses in botanical systematics. — Ann. Rev. Ecol. Syst.12, 387–404.Google Scholar
  25. , andG. F. Estabrook, 1976: An operational method for evaluating classifications. — Syst. Bot.1, 373–382.Google Scholar
  26. , andW. H. Wagner, Jr., 1980: A comparison of branching diagrams derived by various phenetic and cladistic methods. — Syst. Bot.5, 264–293.Google Scholar
  27. Edye, L. A., W. T. Williams, andA. J. Pritchard, 1970: A numerical analysis of variation patterns in Australian introductions ofGlycine wightii (G. javanica). — Aust. J. agric. Res.21, 57–69.Google Scholar
  28. El-Gazzar, A., L. Watson, W. T. Williams, andG. N. Lance, 1968: The taxonomy ofSalvia: a test of two radically different numerical methods. — J. Linn. Soc. Lond. Bot.60, 237–250.Google Scholar
  29. Estabrook, G. F., 1967: An information theory model for character analysis. — Taxon16, 86–97.Google Scholar
  30. Felsenstein, J. (ed.), 1983: Numerical Taxonomy. — NATO ASI Series, Ser. G: Ecological Sciences No. 1. Springer-Verlag, Berlin — Heidelberg — New York — Tokyo, X + 644 pp.Google Scholar
  31. Fritsch, R., J. Kruse, H. Ohle, undH. I. Schäfer, 1977: Vergleichend-anatomische Untersuchungen im Verwandtschaftskreis vonTriticum L. undAegilops L. (Gramineae). — Kulturpflanze25, 155–265.Google Scholar
  32. Gilmartin, A. J., andM. J. Harvey, 1976: Numerical phenetics in routine taxonomic work. — Syst. Bot.1, 35–45.Google Scholar
  33. Gökgöl, M., 1961: Die iranischen Weizen. — Z. Pflanzenzüchtg.45, 315–333.Google Scholar
  34. Hartigan, J. A., 1973: Clustering. — Ann. Rev. Biophy. Bioeng.2, 81–101.Google Scholar
  35. Hong, E. H., K. Y. Park, andB. H. Choe, 1979: [Classification of soya bean germ-plasm by computer]. — Research Report of the Office of Rural Development, Crop (Nong-sa Si-hum Yen-ku Bo-ko, Jak-mul-pyun)21, 111–115. [Ko, Engl. summ.]. Ref.: Plant Breed. Abstr. 51, 1981, no. 3757.Google Scholar
  36. Inger, R. E., 1973: Numerical taxonomy. — Caldasia11 (52), 7–28.Google Scholar
  37. Ivanov, G. I., 1985: O taksonomičeskom statuse sintetičeskich allogeksaploidov pšenicy s genomnym sostavom AbAuB. On taxonomical status of synthetic allohexaploids with AbAuB genome. — Sel'skochoz. Biol. No. 1, 35–39.Google Scholar
  38. Johnson, L. A. S., 1970: Rainbows end — the quest for an optimal taxonomy. — Syst. Zool.19, 203–239.PubMedGoogle Scholar
  39. Joshi, M. G., andB. Singh, 1979: Genetic divergence among tetraploidTriticum species. — Indian J. Genet. & Plant Breed.39, 188–193.Google Scholar
  40. Kendrick, W. B., 1965: Complexity and dependence in computer taxonomy. — Taxon14, 141–154.Google Scholar
  41. Kihara, H., K. Yamashita, andM. Tanaka, 1965: Morphological, physiological, genetical and cytological studies inAegilops andTriticum collected from Pakistan, Afghanistan and Iran. — Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, 1955, Vol.1, 1–118.Google Scholar
  42. Klotz, G., 1967: Numerische Taxonomie und moderne Verwandtschaftsforschung. — Feddes Repert.75, 115–130.Google Scholar
  43. Knüpffer, H., 1983: Computer in Genbanken — eine Übersicht. — Kulturpflanze31, 77–143.Google Scholar
  44. Kuckuck, H., 1956: Report to the Government of Iran on the distribution and variation of cereals in Iran (including their related wild species). — Expanded Technical Assistance Program, FAO Report 517, 22 pp., 1 map, FAO Rome.Google Scholar
  45. --, 1959: Über das Vorkommen vonTriticum spelta im Iran, mit einem Beitrag zur Entwicklung der hexaploiden Kulturweizen. — Bericht über den zweiten Kongreß der Eucarpia Köln 1959, 27–34.Google Scholar
  46. , 1973: Utilization of Iranian genetic material. — Wheat Information Service36, 21–26.Google Scholar
  47. Lambert, J. M., S. E. Meacock, J. Barrs, andP. F. M. Smartt, 1973: Axor and Monit: two new polythetic-divisive strategies for hierarchical classification. — Taxon22, 173–176.Google Scholar
  48. Legendre, P., andD. J. Rogers, 1972: Characters and clustering in taxonomy: a synthesis of two taximetric procedures. — Taxon21, 567–606.Google Scholar
  49. Leuschner, D., 1974: Einführung in die numerische Taxonomie. — VEB Gustav Fischer Verlag, Jena, 139 pp.Google Scholar
  50. McCammon, R. B., andG. Wenninger, 1970: The dendrograph. — Computer Contrib.48, Kansas Geol. Surv., Univ. Kansas, Lawrence, 28 pp.Google Scholar
  51. McNeill, J., 1979: Structural value: A concept used in the construction of taxonomic classification. — Taxon28, 481–504.Google Scholar
  52. Mansfeld, R., 1951: Das morphologische System des Saatweizens,Triticum aestivum L. s. 1. — Züchter21, 41–60.Google Scholar
  53. Meyer, D., 1980: Numerisch-taxonomische Untersuchungen anPisum sativum L. — Kulturpflanze28, 285–340.Google Scholar
  54. Minkoff, E. C., 1965: The effects on classification of slight alterations in numerical technique. — Syst. Zol.14, 196–213.Google Scholar
  55. Molina-Cano, J. L., 1977: Numerical taxonomy as an aid to barley germplasm collection. — Barley Genetics Newletter7, 45–50.Google Scholar
  56. Moss, W. W., andJ. A. Hendrickson, Jr., 1973: Numerical Taxonomy. — Ann. Rev. Entomol.18, 227–258.Google Scholar
  57. Mudra, A., 1960: Getreidezüchtung in Iran. — Z. Pflanzenzüchtg.44, 297–300.Google Scholar
  58. , 1972: Weizenzüchtung in Iran. — ein Beitrag zum Problem der HY-Sorten. — Z. Pflanzenzüchtg.68, 181–212.Google Scholar
  59. , 1973: Wheat breeding in Iran. — Plant Genetic Resources Newsletter30, 3–12.Google Scholar
  60. Nakai, Y., andS. Tsuji, 1984: A polyacrylamide gel isoelectrofocusing study of acid phosphatase isozymes ofAegilops species with reference to their numerical taxonomy. — Seiken Zihô32, 1–8.Google Scholar
  61. Pankhurst, R. J. (ed.)., 1975: Biological Identification with Computers. — Academic Press, London — New York — San Francisco, X + 333 pp. (The Systematics Association Special Volume No. 7).Google Scholar
  62. 1978: Biological Identification. The principles and practice of identification methods in biology. — Edward Arnold, London, VIII + 104 pp.Google Scholar
  63. Porceddu, E., S. Vannella, andP. Perrino, 1981: Character analysis and numerical classification in a wheat collection from Sicily. — Kulturpflanze29, 251–266.Google Scholar
  64. Pratt, V., 1972: Numerical taxonomy — a critique. — J. theor. Biol.36, 581–592.PubMedGoogle Scholar
  65. Proctor, J. R., andW. B. Kendrick, 1963: Unequal weighting in numerical taxonomy. — Nature197, 716–717.Google Scholar
  66. Rezvani, H., 1968: Wheat in Iran. — Conference on Wheat & Barley Production in Iran, Teheran, July 1968, 7 pp., XII tables.Google Scholar
  67. Rogers, D. J., 1963: Taximetrics — new name, old concept. — Brittonia15, 285–290.Google Scholar
  68. Rohlf, F. J., 1974: Methods of comparing classifications. — Ann. Rev. Ecol. Syst.5, 101–113.Google Scholar
  69. , andR. R. Sokal, 1981: Comparing numerical taxonomic studies. — Syst. Zool.30, 459–490.Google Scholar
  70. Sárosi, J., andJ. Sváb, 1979: Testing of the lucerne world collection of the gene-bank in Tápiószele by means of principal component analysis. — Növénytermelés28, 115–123. [Hung., Engl. summ.].Google Scholar
  71. Schlee, D., 1975: An analysis of numerical phenetics. — Entomol. Scand.6, 1–9.Google Scholar
  72. Schultze-Motel, J., 1978: Anwendung numerisch-taxonomischer Methoden zur Ermittlung von Korrelationsbrechern beim Saatweizen (Triticum aestivum L.). — Kulturpflanze26, 329–337.Google Scholar
  73. , andD. Meyer, 1981: Numerical taxonomic studies in the generaTriticum L. andPisum L. — Kulturpflanze29, 241–250.Google Scholar
  74. , 1982: Anwendung numerisch-taxonomischer Methoden bei Kulturpflanzen. — Kulturpflanze30, 97–122.Google Scholar
  75. Sneath, P. H. A., 1976a: Some applications of numerical taxonomy to plant breeding. — Z. Pflanzenzüchtg.76, 19–46.Google Scholar
  76. , 1976b: Phenetic taxonomy at the species level and above. — Taxon25, 437–450.Google Scholar
  77. , andR. R. Sokal, 1973: Numerical Taxonomy. The principles and practice of numerical classification. — W. H. Freeman and Company, San Francisco, XV + 573 pp.Google Scholar
  78. Sokal, R. R., andF. J. Rohlf, 1980: An experiment in taxonomic judgement. — Syst. Bot.5, 341–365.Google Scholar
  79. , andP. H. A. Sneath, 1963: Principles of numerical taxonomy. — W. H. Freeman and Company, San Francisco and London, XVI + 359 pp.Google Scholar
  80. Syme, J. R., andJ. P. Thompson, 1981: Phenotypic relationships among Australian and Mexican wheat cultivars. — Euphytica30, 467–481.Google Scholar
  81. Teoh, S. B., andJ. Hutchinson, 1983: Interspecific variation in C-banded chromosomes of diploidAegilops species. — Theor. Appl. Genet.65, 31–40.Google Scholar
  82. T'Mannetje, L., 1967: A comparison of eight numerical procedures applied to the classification of some AfricanTrifolium taxa based onRhizobium affinities. — Aust. J. Bot.15, 512–528.Google Scholar
  83. Udačin, R. A., 1965: Vidy i raznovidnosti pšenic Irana. — Vestnik sel'skochoz. nauki (10), 126–130.Google Scholar
  84. , 1969: K poznaniju vidovogo i raznovidnostnogo sostava pšenic Irana. — Trudy prikl. bot., genet. selekc.39 (3), 135–149.Google Scholar
  85. Vagnerova, V., V. Vacek, 1983: Moznosti vyuziti metod numericke taxonomie pri hodnoceni kolekce odrud. Möglichkeiten der Ausnutzung von Methoden der numerischen Taxonomie bei Bewertung der Sortenkollektion. — Acta Univ. Agric., Fac. agron., Brno31 (1–2), 61–67.Google Scholar
  86. Vannella, S., E. Porceddu, 1978: Quantità di informazione contenuta in caratteri tassonomici. — Annali di Facoltà di Agraria, Università di Bari28, 641–654.Google Scholar
  87. Wajnštejn, B. A., 1968: O čislovoj taksonomii. On the numeric taxonomy. — Ž. obšč. Biol.29 (2), 153–167.Google Scholar
  88. , 1972: Sistematika, klassifikacija i čislovaja taksonomija. — Ž. obšč. Biol.33 (2), 139–146.Google Scholar
  89. Williams, W. T., 1969: The problem of attribute-weighting in numerical classification. — Taxon18, 369–374.Google Scholar
  90. , andM. B. Dale, 1962: Fundamental problems in numerical taxonomy. — Advances in Botanical Research2, 35–68.Google Scholar
  91. Yamada, T., andS. Suzuki, 1974: Classification of alfalfa cultivars by clustering method based on quantitative characters and its significance in introduction and conservation of genetic resources. — XII International Grassland Congress 1974, Proceedings, 374–379.Google Scholar
  92. , 1975: Classification of alfalfa cultivars by the clustering method based on quantitative characters: its significance in the introduction and conservation of genetic resources. — Use and Management of Biological Resources, Vol.1, Gene Conservation — Exploration, Collection, Preservation and Utilization of Genetic Resources, ed. byT. Matsuo, JIBP Synthesis Vol.5, Tokyo, 137–143, 145.Google Scholar

Copyright information

© Akademie-Verlag 1987

Authors and Affiliations

  • Jürgen Schultze-Motel
    • 1
  1. 1.Zentralinstitut für Genetik und Kulturpflanzenforschung der Akademie der Wissenschaften der DDRGatersleben

Personalised recommendations