Numerische Mathematik

, Volume 8, Issue 2, pp 150–160 | Cite as

Bounds on the error of Gauss-type quadratures

  • Frank Stenger


Mathematical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Krylov, V.: Approximate calculation of integrals. New York: McMillan 1962 (translated by A. H.Stroud; first printing in Russian, 1959)Google Scholar
  2. [2]
    Davis, P. J.: Errors of numerical approximation for analytic functions. Survey of numerical analysis, edited byJ. Todd. New York: McGraw Hill 1962.Google Scholar
  3. [3]
    Hammerlin, G.: Ableitungsfreie Schranken für Quadraturfehler. Num. Math.5, 226–233 (1963).Google Scholar
  4. [4]
    Wilf, H.: Exactness conditions in numerical quadrature. Num. Math.5, 315–319 (1964).Google Scholar
  5. [5]
    McNamee, J.: Error bounds for the evaluation of integrals by the Euler-Maclaurin formula and by Gauss-type formulae. Math. Comput.18, 368–381 (1964).Google Scholar
  6. [6]
    Erdelyi, A.,: Higher transcendental functions, Vol. 2. New York: et al. McGraw Hill 1953.Google Scholar
  7. [7]
    — andM. Wyman: The asymptotic evaluation of certain integrals. Arch. Rational Mech. Anal.14, 217–260 (1963).Google Scholar
  8. [8]
    National Bureau of Standards: Handbook of mathematical functions. Applied Math. Series, Vol. 55 (1964).Google Scholar
  9. [9]
    Meinardus, G.: Approximation von Funktionen und ihre numerische Behandlung. Berlin- Göttingen-Heidelberg: Springer 1964.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Frank Stenger
    • 1
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada

Personalised recommendations