Numerische Mathematik

, Volume 8, Issue 2, pp 114–122 | Cite as

Random matrices and graphs

  • B. R. Heap


Mathematical Method Random Matrice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Austin, T. L., R. E. Fagen, W. F. Penney, andJ. Riordan: The number of components in random linear graphs. Ann. Math. Stat.30, 747–754 (1959)Google Scholar
  2. [2]
    Berge, C.: The theory of graphs. London: Methuen 1962.Google Scholar
  3. [3]
    Doob, J. L.: Stochastic processes. New York: John Wiley 1953Google Scholar
  4. [4]
    Gilbert, E. N.: Random graphs. Ann. Math. Stat.30, 1141–1144 (1959).Google Scholar
  5. [5]
    Gill, A.: Introduction to the theory of finite-state machines. New York: McGraw-Hill 1962.Google Scholar
  6. [6]
    Harary, F.: A graph theoretic method for the complete reduction of a matrix with a view toward finding its eigenvalues. J. Math. and Phys.38, 104–111 (1959).Google Scholar
  7. [7]
    — A graph theoretic approach to matrix inversion by partitioning. Numer. Math.4, 128–135 (1962).Google Scholar
  8. [8]
    Heap, B. R.: Algorithms for the reduction of a matrix by partitioning. To be published.Google Scholar
  9. [9]
    Ingerman, P. Z.: Path matrix. Algorithm141, Comm. ACM5, 556 (1962).Google Scholar
  10. [10]
    Ore, O.: Theory of graphs. Amer. Math. Soc. Colloq. Publ. Vl. XXXVIII, Providence, 1962.Google Scholar
  11. [11]
    Warshall, S.: A theorem on Boolean matrices. J. Assoc. Comput. Mach.9, 11–12 (1962).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • B. R. Heap
    • 1
  1. 1.Mathematics DivisionNational Physical LaboratoryTeddington, MiddlesexGreat Britain

Personalised recommendations