Numerische Mathematik

, Volume 12, Issue 3, pp 186–191 | Cite as

On Newton-like iteration functions: General convergence theorems and a specific algorithm

  • Kenneth M. Brown
  • J. E. DennisJr.


Mathematical Method Convergence Theorem Specific Algorithm Iteration Function General Convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes, J. G. P.: An algorithm for solving nonlinear equations based on the secant method. Comput. J. pp. 66–72 (1965).Google Scholar
  2. 2.
    Brown, K. M.: Solution of simultaneous non-linear equations. Comm. of the ACM10, 728–729 (1967).Google Scholar
  3. 3.
    —, andS. D. Conte: The solution of simultaneous nonlinear equations. 22nd National Conference — ACM, pp. 111–114. Washington, D. C.: Thompson Book Company 1967.Google Scholar
  4. 4.
    Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp.19, 577–593 (1965).Google Scholar
  5. 5.
    Bryan, C. A.: An iterative method for solving nonlinear systems of equations. Ph. D. Dissertation, Univ. of Arizona, 1963.Google Scholar
  6. 6.
    Collatz, L.: Functional analysis and numerical mathematics. New York: Academic Press 1966.Google Scholar
  7. 7.
    Dennis, J. E., Jr.: On Newton-like methods. Numer. Math.11, 324–330 (1968).Google Scholar
  8. 8.
    — On Newton's method and nonlinear simultaneous displacements. SIAM J. Numer. Anal.4, 103–108 (1967).Google Scholar
  9. 9.
    — On the Kantorovich hypothesis for Newton's method (to appear).Google Scholar
  10. 10.
    Freudenstein, F., andB. Roth: Numerical solutions of systems of nonlinear equations. J. Assoc. Comput. Mach.10, 550–556 (1963).Google Scholar
  11. 11.
    Kantorovich, L. V., andG. P. Akilov: Functional analysis in normed spaces. New York: Pergamon Press 1964.Google Scholar
  12. 12.
    Lieberstein, H. M.: Overrelaxation for nonlinear elliptic partial differential equations. M.R.C. Tech. Summary Report 80, Univ. of Wisconsin 1959.Google Scholar
  13. 13.
    Ortega, J., andW. Rheinboldt: Monotone iterations for nonlinear equations with applications to Gauss-Seidel methods. SIAM J. on Numer. Anal.4, 171–190 (1967).Google Scholar
  14. 14.
    Pack, D. C., andG. W. Swan: Magneto-gasdynamic flow over a wedge. J. Fluid Mech.25, 165–178 (1966).Google Scholar
  15. 15.
    Rheinboldt, W. C.: On a unified convergence theory for a class of iterative processes. University of Maryland Technical Report TR-67-46, May 1967.Google Scholar
  16. 16.
    Robinson, S. M.: Interpolative solution of systems of nonlinear equations. SIAM J. Numer. Anal.3, 650–658 (1966).Google Scholar
  17. 17.
    Schechter, S.: Iteration methods for nonlinear problems. Trans. Amer. Math. Soc.104, 179–189 (1962).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Kenneth M. Brown
    • 1
  • J. E. DennisJr.
    • 2
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA
  2. 2.Department of MathematicsThe University of UtahSalt Lake CityUSA

Personalised recommendations