Numerische Mathematik

, Volume 12, Issue 3, pp 186–191 | Cite as

On Newton-like iteration functions: General convergence theorems and a specific algorithm

  • Kenneth M. Brown
  • J. E. DennisJr.


Mathematical Method Convergence Theorem Specific Algorithm Iteration Function General Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes, J. G. P.: An algorithm for solving nonlinear equations based on the secant method. Comput. J. pp. 66–72 (1965).Google Scholar
  2. 2.
    Brown, K. M.: Solution of simultaneous non-linear equations. Comm. of the ACM10, 728–729 (1967).Google Scholar
  3. 3.
    —, andS. D. Conte: The solution of simultaneous nonlinear equations. 22nd National Conference — ACM, pp. 111–114. Washington, D. C.: Thompson Book Company 1967.Google Scholar
  4. 4.
    Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp.19, 577–593 (1965).Google Scholar
  5. 5.
    Bryan, C. A.: An iterative method for solving nonlinear systems of equations. Ph. D. Dissertation, Univ. of Arizona, 1963.Google Scholar
  6. 6.
    Collatz, L.: Functional analysis and numerical mathematics. New York: Academic Press 1966.Google Scholar
  7. 7.
    Dennis, J. E., Jr.: On Newton-like methods. Numer. Math.11, 324–330 (1968).Google Scholar
  8. 8.
    — On Newton's method and nonlinear simultaneous displacements. SIAM J. Numer. Anal.4, 103–108 (1967).Google Scholar
  9. 9.
    — On the Kantorovich hypothesis for Newton's method (to appear).Google Scholar
  10. 10.
    Freudenstein, F., andB. Roth: Numerical solutions of systems of nonlinear equations. J. Assoc. Comput. Mach.10, 550–556 (1963).Google Scholar
  11. 11.
    Kantorovich, L. V., andG. P. Akilov: Functional analysis in normed spaces. New York: Pergamon Press 1964.Google Scholar
  12. 12.
    Lieberstein, H. M.: Overrelaxation for nonlinear elliptic partial differential equations. M.R.C. Tech. Summary Report 80, Univ. of Wisconsin 1959.Google Scholar
  13. 13.
    Ortega, J., andW. Rheinboldt: Monotone iterations for nonlinear equations with applications to Gauss-Seidel methods. SIAM J. on Numer. Anal.4, 171–190 (1967).Google Scholar
  14. 14.
    Pack, D. C., andG. W. Swan: Magneto-gasdynamic flow over a wedge. J. Fluid Mech.25, 165–178 (1966).Google Scholar
  15. 15.
    Rheinboldt, W. C.: On a unified convergence theory for a class of iterative processes. University of Maryland Technical Report TR-67-46, May 1967.Google Scholar
  16. 16.
    Robinson, S. M.: Interpolative solution of systems of nonlinear equations. SIAM J. Numer. Anal.3, 650–658 (1966).Google Scholar
  17. 17.
    Schechter, S.: Iteration methods for nonlinear problems. Trans. Amer. Math. Soc.104, 179–189 (1962).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Kenneth M. Brown
    • 1
  • J. E. DennisJr.
    • 2
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA
  2. 2.Department of MathematicsThe University of UtahSalt Lake CityUSA

Personalised recommendations