Efficient radiochemical separation for the determination of plutonium in environmental samples, using a supported, highly specific extractant

  • K. Bunzl
  • W. Kracke


A radiochemical separation procedure has been developed for a very efficient isolation of plutonium from environmental samples. Essentially, the method involves the following steps: ashing of the sample and preparation of the load solution; separation of plutonium by a column containing a commercially available, highly specific, supported extractant; electrodeposition of Pu and subsequent α-spectrometry. Detailed procedures are reported for liver samples and for soil. The modifications necessary for sample sizes above 5 g dry weight and up to 200 g are also given. Recoveries of added tracers are 60–70%. The precision of the method is <10% (RSD). The accuracy was examined by analyzing also certified standard reference materials. Due to the very efficient isolation of Pu, the resulting α-spectrum is virtually free of interfering α-emitters of Th and U.


Physical Chemistry Inorganic Chemistry Reference Material Plutonium Environmental Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Holm, R. Fukai,Talanta, 24 (1977) 659.CrossRefGoogle Scholar
  2. 2.
    N. P. Singh, S. A. Ibrahim, N. Cohen, M. E. Wrenn,Anal. Chem., 50 (1978) 357.CrossRefPubMedGoogle Scholar
  3. 3.
    M. Fisenne, P. M. Perry,Radiochem. Radioanal. Lett., 33 (1978) 259.Google Scholar
  4. 4.
    N. A. Talvitie,Anal. Chem., 44 (1972) 280.CrossRefGoogle Scholar
  5. 5.
    R. K. Schultz, G. T. Wink, L. M. Fujii,Soil Sci., 132 (1981) 71Google Scholar
  6. 6.
    G. Rosner,J. Radioanal. Chem., 64 (1981) 55.Google Scholar
  7. 7.
    H. Schüttelkopf, Entwicklung einer Analysenmethode für Plutonium im Femtogramm/Grammbereich und ihre Anwendungen auf Umweltproben. KfK-Bericht 3055, Karlsruhe, 1981.Google Scholar
  8. 8.
    M. Yamamoto,J. Radioanal. Nucl. Chem., 90 (1985) 401.CrossRefGoogle Scholar
  9. 9.
    D. S. Popplewell, J. G. Ham, T. E. Johnson, S. F. Barry,Health Phys., 49 (1985) 304.PubMedGoogle Scholar
  10. 10.
    K. G. W. Inn,J. Radioanal. Nucl. Chem., 115 (1987) 91.CrossRefGoogle Scholar
  11. 11.
    A. R. Moorthy, C. J. Schopfer, S. Banerjee,Anal. Chem., 60 (1988) 857A.PubMedGoogle Scholar
  12. 12.
    K. Bunzl, W. Kracke,J. Radioanal. Nucl. Chem., 138 (1990) 83.CrossRefGoogle Scholar
  13. 13.
    K. Bunzl, W. Kracke,J. Radioanal. Nucl. Chem., 156 (1992) 21.CrossRefGoogle Scholar
  14. 14.
    K. Bunzl, W. Kracke,Health Phys., 44 (1983) 441.PubMedGoogle Scholar
  15. 15.
    P. W. Krey, E. P. Hardy, C. Pachuchi, F. Rourke, J. Coluzza, W. K. Benson, Mass Isotopic Composition of Global Fallout Plutonium in Soil, in: Transuranium Nuclides in the Environment, Internat. Atomic Energy Agency, IAEA, Vienna, 1976.Google Scholar
  16. 16.
    J. F. McInroy, E. E. Campbell, W. D. Moss, G. L. Tietjen, B. C. Eusler, H. A. Boyd,Health Phys., 37 (1979) 1.PubMedGoogle Scholar
  17. 17.
    E. P. Horwitz, M. L. Dietz,Anal. Chim. Acta, 238 (1990) 263.CrossRefGoogle Scholar
  18. 18.
    K. Bunzl, W. Kracke, W. Schimmack,Analyst, 117 (1992) 469.CrossRefPubMedGoogle Scholar
  19. 19.
    J. C. Veselsky,Int. J. Appl. Radiat. Isot., 27 (1976) 244.CrossRefGoogle Scholar
  20. 20.
    K. Bunzl, W. Kracke,Radiochem. Radioanal. Lett., 42 (1980) 77.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • K. Bunzl
    • 1
  • W. Kracke
    • 1
  1. 1.Forschungszentrum für Umwelt und GesundheitInstitut für StrahlenschutzNeuherbergGermany

Personalised recommendations