Numerische Mathematik

, Volume 12, Issue 4, pp 322–326 | Cite as

The third boundary value problem for elliptic equations

  • P. Keast
  • P. Keast
Article

Keywords

Mathematical Method Elliptic Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keast, P., andA. R. Mitchell: Finite difference solution of the third boundary value problem in elliptic and parabolic equations. Num. Math.10, 67 (1967).Google Scholar
  2. 2.
    Halmos, P. R.: Finite dimensional vector spaces. Princeton: D. van Nostrand Co. 1958.Google Scholar
  3. 3.
    Schechter, S.: Quasi tri-diagonal matrices and type insensitive difference equations. Quart. App. Math.18, 285–295 (1960).Google Scholar
  4. 4.
    Varga, R. S.: Matrix iterative analysis. Englewood Cliffs, (N. J.): Prentice Hall 1962.Google Scholar
  5. 5.
    Douglas, J., andC. M. Pearcy: On the convergence of alternating direction procedures in the presence of singular operators. Num. Math.5, 175–184 (1963).Google Scholar
  6. 6.
    Garabedian, P. R.: Partial differential equations. New York: J. Wiley & Sons 1964.Google Scholar
  7. 7.
    Fax, L.: Numerical solution of ordinary and partial differential equations. London Pergamon Press 1962.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • P. Keast
    • 1
  • P. Keast
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations