Numerische Mathematik

, Volume 9, Issue 4, pp 279–301 | Cite as

Solution of symmetric and unsymmetric band equations and the calculation of eigenvectors of band matrices

  • R. S. Martin
  • J. H. Wilkinson
Handbook Series Linear Algebra


Mathematical Method Band Matrice Band Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bowdler, H. J., R. S. Martin, G. Peters, andJ. H. Wilkinson: Solution of Real and Complex Systems of Linear Equations. Numerische Mathematik8, 217–234 (1966).Google Scholar
  2. [2]
    Martin, R. S., andJ. H. Wilkinson: Symmetric decomposition of positive definite band matrices. Numerische Mathematik7, 355–361 (1965).Google Scholar
  3. [3]
    —,G. Peters, andJ. H. Wilkinson: Iterative refinement of the solution of a positive definite system of equations. Numerische Mathematik (to be published).Google Scholar
  4. [4]
    Wilkinson, J. H.: Calculation of the eigenvectors of a symmetric tridiagonal matrix by inverse iteration. Numerische Mathematik4, 368–376 (1962).Google Scholar
  5. [5]
    —:The algebraic eigenvalue problem. London: Oxford University Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • R. S. Martin
    • 1
  • J. H. Wilkinson
    • 1
  1. 1.Mathematics DivisionNational Physical LaboratoryTeddington, MiddlesexGreat Britain

Personalised recommendations