Journal of Radioanalytical and Nuclear Chemistry

, Volume 119, Issue 3, pp 171–180 | Cite as

Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions

  • P. Ünak
  • T. Ünak
Article

Abstract

The gas-chromatographic analysis of benzene-iodine solutions containing molecular iodine-125 after various storage times showed that no radiolytic products appeared while some products such as benzene, iodobenzene, biphenyl, and iodobiphenyl, were detected under the same analytical conditions in our recent studies concerning the reactions of iodine atoms activated by L shell photoelectric ionization in benzene-iodine solutions, and the self-radiolysis of iodobenzene labelled with iodine-12515. On the other hand, our theoretical calculations showed that if iodine molecules were uniformly distributed in benzene, iodobenzene should be detected as a radiolytic product due to the local absorption of Auger electrons of iodine-125. The absence of any radiolytic product clearly demonstrated that iodine aggregates have an important role in the absorption of Auger electrons of iodine-125 in benzene-iodine solutions. In addition, theoretical calculations showed that if the iodine aggregation is taken into account the experimental result agrees well with theoretical calculations.

Keywords

Physical Chemistry Benzene Inorganic Chemistry Iodine Auger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. G. Hofer, W.L. Hughes,Radiat. Res., 47 /1981/ 94.Google Scholar
  2. 2.
    H.J. Burki, R. Roods, L.E. Feinendegen, V.P. Bond,Int. J. Radiat. Biol., 24 /1977/ 363.Google Scholar
  3. 3.
    R.E. Krisch, C.J. Saury,Int. J. Radiat. Biol., 27 /1975/ 553.Google Scholar
  4. 4.
    K.G. Hofer, C.R. Harris, J.M. Smith,Int. J. Radiat. Biol., 28 /1975/ 225.Google Scholar
  5. 5.
    K.G. Hofer, G. Keought, J.M. Smith,Curr. Top. Radiat. Res., 12 /1977/ 335.Google Scholar
  6. 6.
    R.L. Warters, K.G. Hofer, C.R. Harris, J.M. Smith,Curr. Top. Radiat. Res., 12 /1977/ 389.Google Scholar
  7. 7.
    S.L. Commerfeld, V.P. Bond, E.P. Cronkite, U. Reinecke,Int. J. Radiat. Biol., 37 /1980/ 547.Google Scholar
  8. 8.
    U. Linz, A. Stöcklin,Radiat. Res., 101 /1985/ 262.PubMedGoogle Scholar
  9. 9.
    D.E. Charlton,Radiat. Res., 107 /1986/ 163.PubMedGoogle Scholar
  10. 10.
    P. Ünak, T. Ünak /in preparation/.Google Scholar
  11. 11.
    D.E. Charlton, J. Booz,Radiat. Res., 87 /1981/ 1.PubMedGoogle Scholar
  12. 12.
    T. Ünak,Nucl. Inst. and Meth., A255 1–2 /1987/ 271.Google Scholar
  13. 13.
    P. Ünak, T. Ünak,Nucl. Inst. and Meth., A255, 1–2 /1987/ 237.Google Scholar
  14. 14.
    M. Eral, T. Ünak,J. Radioanal. Nucl. Chem., Lett., 93 /1985/ 237.Google Scholar
  15. 15.
    P. Ünak, T. Ünak,J. Radioanal. Nucl. Chem., Lett., 95 /1985/ 281.Google Scholar
  16. 16.
    R.M. Iyer, J.E. Willard,J. Am. Chem. Soc., 80 /1966/ 4561.Google Scholar
  17. 17.
    R.L. Ayres, E.J. Kemnitz, R.M. Lambrecht, N.P. Parks, E.P. Rack,Radiochim. Acta, 11 /1969/ 1.Google Scholar
  18. 18.
    E.A. Ogryzlo, B.C. Sanctuary,J. Phys. Chem., 69 /1965/ 4422.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • P. Ünak
  • T. Ünak
    • 1
  1. 1.Ege University, Faculties of Engineering and ScienceIzmirTurkey

Personalised recommendations