Advertisement

A new approach to the study of normalized appearance energy of hot atom reaction product in optical isomers of tris/acetylacetonato/ruthenium/III/

  • I. Kaneko
  • T. Sekine
  • K. Yoshihara
Article

Abstract

Appearance energy is originally the threshold energy at which récoil products begin to be observed. This was determined by /γ, γ'/ reactions. Afterwards, an alternative technique has been developed to determine it by summing up recoil energy spectrum. The latter technique assumed a step function rising at energy EO in the yield-energy relation. EO should be defined as ‘normalized appearance energy’ /NAE/, because it is not threshold energy in its original sense. The NAE for isomerization from Δ to Λ /or reverse/ in Ru/acac/3 was estimated to be 29 eV, and that for free atom /or ion/ formation was calculated to be 34 eV. The 5 eV difference seems to indicate an energy interval in which isomerization effectively occurs in the recoil reaction.

Keywords

Physical Chemistry Inorganic Chemistry Energy Spectrum Step Function Threshold Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Yoshihara, H. Kudo,J. Chem. Phys., 52 /1970/ 2950.Google Scholar
  2. 2.
    K. Yoshihara, M.H. Yang, T. Shiokawa,Radiochem. Radioanal. Lett., 4 /1970/ 143.Google Scholar
  3. 3.
    K. Yoshihara, T. Mizusawa,Radiochem. Radioanal. Lett., 9 /1972/ 263.Google Scholar
  4. 4.
    K. Yoshihara, A. Fujita, T. Shiokawa,Res. Rpts. Nucl. Sci. Tohoku Univ., 9 /1976/ 193.Google Scholar
  5. 5.
    K. Yoshihara, A. Fujita, T. Shiokawa,J. Inorg. Nucl. Chem., 39 /1977/ 1733.Google Scholar
  6. 6.
    G. Harbottle Chemical Effects of Nuclear Transformations in Inorganic Systems, North-Holland Publ. Co., Amsterdam, 1979, p. 70.Google Scholar
  7. 7.
    M. Tanaka,Radiochim. Acta, 34 /1983/ 104.Google Scholar
  8. 8.
    T. Matsuura, K. Sasaki,Radiochim. Acta /in press/.Google Scholar
  9. 9.
    T. Matsuura, K. Sasaki, H. Shoji,J. Radioanal. Nucl. Chem., Articles, 134 /1989/ 311.Google Scholar
  10. 10.
    Chemical Society of Japan, “Shin-jikken Kagaku Koza” Vol. 8 /1977/ Maruzen, Tokyo.Google Scholar
  11. 11.
    K. Yoshihara, H. Kido, T. Omori,J. Inorg. Nucl. Chem., 43 /1981/ 639.Google Scholar
  12. 12.
    T. Sekine, M. Sano, K. Yoshihara,J. Radioanal Nucl. Chem., Lett., 107 /1986/ 207.Google Scholar
  13. 13.
    T. Sekine, M. Sano, K. Yoshihara,Radiochim. Acta /in press/.Google Scholar
  14. 14.
    G. Harbottle, U. Zahn, Chemical Effects of Nuclear Transformation, Vol. II, IAEA, Vienna, 1965, p. 133.Google Scholar
  15. 15.
    K. Sasaki, M. Furukawa, H. Yamatera,Radiochim. Acta, 31 /1982/ 121.Google Scholar
  16. 16.
    T. Sekine, K. Yoshihara, International Symposium on Advanced Nuclear Energy Research-Near-Future Chemistry in Nuclear Energy Field, Japan Atomic Energy Research Institute, Tokyo, 1989, p. 108.Google Scholar
  17. 17.
    T. Sekine, I. Kaneko, K. Yoshihara /to be published/.Google Scholar
  18. 18.
    K. Sasaki, T. Matsuura, International Symposium on Advanced Nuclear Energy Research-Near-Future Chemistry in Nuclear Energy Field, Japan Atomic Energy Research Institute, Tokyo, 1989, p. 108.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • I. Kaneko
    • 1
  • T. Sekine
    • 1
  • K. Yoshihara
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceTohoku UniversitySendaiJapan

Personalised recommendations