Numerische Mathematik

, Volume 9, Issue 3, pp 200–213 | Cite as

Error bounds for the evaluation of integrals by repeated gauss-type formulae

  • Frank Stenger


Mathematical Method Error Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mises, R. von: Numerische Berechnung mehrdimensionaler Integrale. Z. Angew. Math. Mech.34, 201–210 (1954).Google Scholar
  2. [2]
    Sard, A.: New function spaces and their adjoints. Ann. N. Y. Acad. Sci.86, 700–757 (1960).Google Scholar
  3. [3]
    Davis, P. J.: Errors of numerical approximation for analytic functions, Survey of numerical analysis, ed. byJ. Todd. New York: McGraw-Hill Book Inc. 1962.Google Scholar
  4. [4]
    McNamee, J.: Error bounds for the evaluation of integrals by the Euler-Maclaurin formula and by Gauss-type formulae. Math. Comput.18, 368–381 (1964).Google Scholar
  5. [5]
    Hämmerlin, G.: Ableitungsfreie Schranken für Quadraturfehler. Num. Math.5, 226–233 (1963).CrossRefGoogle Scholar
  6. [6]
    Stehger, F.: Bounds on the error of Gauss-type quadratures. Num. Math.8, 150–160 (1966).CrossRefGoogle Scholar
  7. [7]
    Todd, J.: Survey of numerical analysis. New York: McGraw-Hill Book-Inc. 1962.Google Scholar
  8. [8]
    Meinardus, G.: Approximation von Funktionen und ihre Numerische Behandlung. Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  9. [9]
    National Bureau of Standards. Handbook of mathematical. functions. Applied Math. Series vol. 55. 1964.Google Scholar
  10. [10]
    McNamee, J., andF. Stehger: Construction of fully symmetric numerical integration formulas. To be published.Google Scholar
  11. [11]
    Nikol'skii, S. M.: Quadrature formulae [Russian]. Moscow: Fizmatgiz (Gos. Izdat. Fiz. Mat. Lit.) 1958. 1958.Google Scholar
  12. [12]
    Ahlin, A. C.: On error bounds for Gaussian cubature. SIAM Rev.4, 25–39 (1962).CrossRefGoogle Scholar
  13. [13]
    Stroud, A. H., andD. Secrest: Gaussian quadrature formulas. New York: Prentice-Hall 1966.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Frank Stenger
    • 1
  1. 1.Department of MathematicsThe University of MichiganAnn ArborUSA

Personalised recommendations