Abstract
We present a simple argument which gives a bound on the ionization energy of large atoms that implies the bound on the excess charge of Fefferman and Seco [2].
Similar content being viewed by others
References
Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B.: Schrödinger Operators. Berlin, Heidelberg, New York: Springer 1987
Fefferman, C. L., Seco, L. A.: Asymptotic neutrality of large ions.Commun. Math. Phys. 128, 109–130 (1990)
Fefferman, C. L., Seco, L. A.: An upper bound for the number of electrons in a large ion. Proc. Natl. Acad. Sci. USA86, 3464–3465 (1989)
Webster Hughes: An Atomic Energy Lower Bound that Gives Scott's Correction. PhD thesis
Latter, R.: Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential. Phys. Rev.90, 510–599 (1955)
Lieb, E. H.: A lower bound for Coulomb energies. Phys. Lett.70A, 444–446 (1979)
Lieb, E. H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–604 (1981)
Lieb, E. H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A29, 3018–3028 (1984)
Lieb, E. H., Sigal, I. M., Simon, B., Thirring, W.: Asymptotic neutrality of large-Z ions. Commun. Math. Phys.116, 635–644 (1988)
Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules, and solids. Adv. Math.23, 22–116 (1977)
Ruskai, M. B.: Absence of discrete spectrum in highly negative ions. Commun. Math. Phys.82, 457–469 (1982)
Ruskai, M. B.: Absence of discrete spectrum in highly negative ions, II. Commun. Math. Phys.85, 325–327 (1982)
Siedentop, H., Weikard, R.: On the leading energy correction of the statistical model of the atom: Interacting case. Commun. Math. Phys.112, 471–490 (1987)
Siedentop, H., Weikard, R.: On the leading correction of the Thomas-Fermi model: Lower bound-with an appendix by Müller, A. M. K., Invent. Math.97, 159–193 (1989)
Sigal, I. M.: In: Proceeding of the VI International Congress on Mathematical Physics, W. Berlin, 1981
Sigal, I. M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions. Commun. Math. Phys.85, 309–324 (1982)
Sigal, I. M.: How many electrons can a nucleus bind? Ann. Phys.157, 307–320 (1984)
Solovej, J. P.: Universality in the Thomas-Fermi-von Weizsäcker Theory of Atoms and Molecules. PhD thesis, Princeton, Department of Mathematics, June 1989
Thirring, W. E.: A lower bound with the best possible constant for Coulomb hamiltonians. Commun. Math. Phys.79, 1–7 (1981)
Zhislin, G.: Discussion of the spectrum of Schrödinger operator for system of many particles. Tr. Mosk. Mat. Obs.9, 81–128 (1960)
Author information
Authors and Affiliations
Additional information
Communicated by B. Simon
Supported by a Sloan Dissertation Fellowship. Address from September 1989: Department of Mathematics, Caltech, Pasadena, CA 91125, USA
Supported in part by NSERC Grant N. A7901
Supported by a Danish Research Academy Fellowship and U.S. National Science Foundation Grant PHY-85-15288-A03. Address from September 1989: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
Rights and permissions
About this article
Cite this article
Seco, L.A., Sigal, I.M. & Solovej, J.P. Bound on the ionization energy of large atoms. Commun.Math. Phys. 131, 307–315 (1990). https://doi.org/10.1007/BF02161416
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02161416