Skip to main content
Log in

Bound on the ionization energy of large atoms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a simple argument which gives a bound on the ionization energy of large atoms that implies the bound on the excess charge of Fefferman and Seco [2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B.: Schrödinger Operators. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  2. Fefferman, C. L., Seco, L. A.: Asymptotic neutrality of large ions.Commun. Math. Phys. 128, 109–130 (1990)

    Google Scholar 

  3. Fefferman, C. L., Seco, L. A.: An upper bound for the number of electrons in a large ion. Proc. Natl. Acad. Sci. USA86, 3464–3465 (1989)

    Google Scholar 

  4. Webster Hughes: An Atomic Energy Lower Bound that Gives Scott's Correction. PhD thesis

  5. Latter, R.: Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential. Phys. Rev.90, 510–599 (1955)

    Google Scholar 

  6. Lieb, E. H.: A lower bound for Coulomb energies. Phys. Lett.70A, 444–446 (1979)

    Google Scholar 

  7. Lieb, E. H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–604 (1981)

    Google Scholar 

  8. Lieb, E. H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A29, 3018–3028 (1984)

    Google Scholar 

  9. Lieb, E. H., Sigal, I. M., Simon, B., Thirring, W.: Asymptotic neutrality of large-Z ions. Commun. Math. Phys.116, 635–644 (1988)

    Google Scholar 

  10. Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules, and solids. Adv. Math.23, 22–116 (1977)

    Google Scholar 

  11. Ruskai, M. B.: Absence of discrete spectrum in highly negative ions. Commun. Math. Phys.82, 457–469 (1982)

    Google Scholar 

  12. Ruskai, M. B.: Absence of discrete spectrum in highly negative ions, II. Commun. Math. Phys.85, 325–327 (1982)

    Google Scholar 

  13. Siedentop, H., Weikard, R.: On the leading energy correction of the statistical model of the atom: Interacting case. Commun. Math. Phys.112, 471–490 (1987)

    Google Scholar 

  14. Siedentop, H., Weikard, R.: On the leading correction of the Thomas-Fermi model: Lower bound-with an appendix by Müller, A. M. K., Invent. Math.97, 159–193 (1989)

    Google Scholar 

  15. Sigal, I. M.: In: Proceeding of the VI International Congress on Mathematical Physics, W. Berlin, 1981

  16. Sigal, I. M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions. Commun. Math. Phys.85, 309–324 (1982)

    Google Scholar 

  17. Sigal, I. M.: How many electrons can a nucleus bind? Ann. Phys.157, 307–320 (1984)

    Google Scholar 

  18. Solovej, J. P.: Universality in the Thomas-Fermi-von Weizsäcker Theory of Atoms and Molecules. PhD thesis, Princeton, Department of Mathematics, June 1989

    Google Scholar 

  19. Thirring, W. E.: A lower bound with the best possible constant for Coulomb hamiltonians. Commun. Math. Phys.79, 1–7 (1981)

    Google Scholar 

  20. Zhislin, G.: Discussion of the spectrum of Schrödinger operator for system of many particles. Tr. Mosk. Mat. Obs.9, 81–128 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Supported by a Sloan Dissertation Fellowship. Address from September 1989: Department of Mathematics, Caltech, Pasadena, CA 91125, USA

Supported in part by NSERC Grant N. A7901

Supported by a Danish Research Academy Fellowship and U.S. National Science Foundation Grant PHY-85-15288-A03. Address from September 1989: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seco, L.A., Sigal, I.M. & Solovej, J.P. Bound on the ionization energy of large atoms. Commun.Math. Phys. 131, 307–315 (1990). https://doi.org/10.1007/BF02161416

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02161416

Keywords

Navigation