Skip to main content
Log in

Zusammenfassung

In der vorliegenden Arbeit wurde versucht, einen Einblick in die Biosynthese der Dipicolinsäure bei der Versporung von Bac. megaterium zu gewinnen.

Es wurde nachgewiesen, daß bei B. megaterium ein enger Zusammenhang zwischen Dipicolinsäuresynthese und Versporung besteht. Wenn auch die Biosynthese der Dipicolinsäure auf mehreren Wegen erfolgen kann, so konnte an Hand der erhobenen Befunde gezeigt werden, daß die Biosynthese der Dipicolinsäure am raschesten, leichtesten und mit der besten Ausbeute von einer C2- und einer C5-Verbindung ausgehend vor sich geht, am wahrscheinlichsten unter Benützung von Glyoxylsäure und Glutaminsäure als Ausgangsmaterial.

Die seit längerem bekannte Wirkung des Mangans als für die Versporung notwendiges Spurenelement konnte auf eine bisher noch nicht näher bestimmbare Aktivierung von Fermenten des Citronensäurecyclus zurückgeführt werden. Bei Anwesenheit von Glykolsäure können die Bacillen jene nur in Gegenwart von Mangan zu Glyoxylsäure oxydieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Amaha, M., Z. J. Ordal andA. Touba: Sporulation Requirements of Bacillus coagulans var. thermo-acidurans in Complex Media. J. Bact.72, 34 (1956).

    PubMed  Google Scholar 

  • Aubert, J. P., J. Millet, E. Pineau etG. Milhaud: Existence de l'acide N-succinyl-l-glutamique chez Bacillus megaterium en voie de Sporulation. C. R. Acad. Sci. (Paris)249, 1956 (1959).

    Google Scholar 

  • Batemann, J. B., andG. W. Monk: Spectral Absorption of Turbid Systems Using Diffuse Light. Science121, 441 (1955).

    PubMed  Google Scholar 

  • Bergey's Manual of Determinative Bacteriology, p. 710. 6th Ed. Baltimore 1948.

  • Blackwood, A. C., andA. Epp: Identification ofβ-Hydroxybutyric Acid in Bacterial Cells by Infrared Spectrophotometry. J. Bact.74, 266 (1957).

    PubMed  Google Scholar 

  • Braams, R.: Radiat. Res.12, 114 (1960); zit. nach Angew. Chem.72, 641 (1960).

    Google Scholar 

  • Byrne, A. F., T. H. Burton andK. B. Koch: Relation of Dipicolinic Acid Content of Anaerobic Bacterial Endospores to their Heat Resistance. J. Bact.80, 139 (1960).

    PubMed  Google Scholar 

  • Callely, A. G., andS. Dagley: Metabolism of Glycine by a Pseudomonad. Nature (Lond.)183, 1793 (1959).

    Google Scholar 

  • Campbell, L. L.: The Oxydative Degradation of Glycine by a Pseudomonas. J. biol. Chem.217, 669 (1955).

    PubMed  Google Scholar 

  • Campbell, L. L., jr.: Transamination of Amino Acids with Glyoxylic Acid in Bacterial Extracts. J. Bact.71, 81 (1956).

    PubMed  Google Scholar 

  • Cavallero, F., eG. A. Meloni: L'azione di alcuni Inibitori Enzimatici sulla Germinazione delle Spore. Igiene Mod.49, 951 (1956).

    Google Scholar 

  • Charney, J., W. P. Fisher andC. P. Hegarty: Manganese as an Essential Element for Sporulation in the Genus Bacillus. J. Bact.62, 145 (1951).

    PubMed  Google Scholar 

  • Church, B. D., andH. O. Halvorson: Dependence of the Heat Resistance of Bacterial Endospores on their Dipicolinic Acid Content. Nature (Lond.)183, 124 (1959).

    Google Scholar 

  • Clagett, C. O., N. E. Tolbergt andR. H. Burris: Oxydation ofα-Hydroxy-Acids by Enzymes from plants. J. biol. Chem.178, 977 (1949).

    Google Scholar 

  • Cohen, P. P., and H. J.Sallach: Nitrogen Metabolism of Amino Acids. In:Greenberg, D. M: Metabolic Pathways, p. 40. New York 1961.

  • Colowick, S. P., andN. O. Kaplan: Methods in Enzymology. Vol. I, p. 453. New York 1955.

    Google Scholar 

  • Corpe, W. A., andR. W. Stone: Oxydation of Glycolic Acid by Penicillium Chrysogenum. J. Bact.80, 452 (1960).

    PubMed  Google Scholar 

  • Curran, H. R., andF. R. Evans: The Influence of Iron or Manganese upon the Formation of Spores by Mesophilic Aerobes in Fluid Organic Media. J. Bact.67, 489 (1954).

    PubMed  Google Scholar 

  • Davies, F. L., jr., andO. B. Williams: Chromatographic Analysis of the Amino Acid Composition of Bacterial Spores. J. Bact.64, 766 (1952).

    PubMed  Google Scholar 

  • Dixon, G. H., and H. L.Kornberg: Assay Methods for Key Enzymes of the Glyoxylate Cycle. Biochem. J.72, 3p (1959).

  • Doak, B. W., andC. Lamanna: On the Antigenic Structure of the Bacterial Spore. J. Bact.55, 373 (1948).

    Google Scholar 

  • Elderfield, R. C.: Heterocyclic Compounds, Vol. I, p. 465ff. New York 1950.

    Google Scholar 

  • Foster, J. W.: Discussion onPowell, J. F.: Chemical Changes occuring during Spore Germination. In: Spores, p. 81. Ed. by H. O. Halvorson, Washington 1957.

  • Foster, J. W., andF. Heiligmann: Biochemical Factors Influencing Sporulation in a Strain of Bacillus cereus. J. Bact.57, 639 (1949).

    Google Scholar 

  • Foster, J. W., andF. Heiligmann: Mineral Deficiencies in Complex Organic Media as limiting Factors in Sporulation of Aerobic Bacilli. J. Bact.57, 613 (1949).

    Google Scholar 

  • Fry, B. A.: The Nitrogen Metabolism of Micro-Organisms, p. 10. London 1955.

  • Gale, E. F.: Synthesis and Organization in the Bacterial Cell, p. 24. London 1959.

  • Gollakota, K. G., and H. O.Halvorson: Biochemical Changes Occuring in Bacillus cereus during Sporulation. In:Halvorson, H. O.: Spores II, p. 113. Minneapolis 1961.

  • Grelet, N.: Nutrition Azotée et Sporulation de Bacillus cereus var. Mycoides. Ann. Inst. Pasteur88, 60 (1955).

    Google Scholar 

  • Grimshaw, J., andL. Marion: The Pyridine Ring and the Problem of its Biosynthesis. Nature (Lond.)181, 112 (1958).

    Google Scholar 

  • Halvorson, H., andB. Church: Biochemistry of Spores of Aerobic Bacilli with Special Reference to Germination. Bact. Rev.21, 116 (1957).

    Google Scholar 

  • Halvorson, H. O., andC. Howitt: The Role of DPA in Bacterial Spores. In: Spores II, p. 149. Minneapolis 1961.

    Google Scholar 

  • Hardwick, W. A., andJ. W. Foster: On the Nature of Sporogenesis in some Aerobic Bacteria. J. gen. Physiol.35, 907 (1954).

    Google Scholar 

  • Hayes, W. C., E. H. Melvin, J. M. Kocke, C. A. Glass andF. R. Senti: Appl. Microbiol.6, 298 (1958); ref. in Chem. Abstr.52, 18654i (1958).

    PubMed  Google Scholar 

  • Hess, K., u.F. Wissing: Synthese der N-Methyl-hexahydro-α-α′-lutidin-dicarbonsäure. Ber. dtsch. chem. Ges.48, 1908 (1915).

    Google Scholar 

  • Janke, A., u.W. Thayenthal: Über den Abbau des Glykokolls durch Bakterien. Biochem. Z.289, 76 (1937).

    Google Scholar 

  • Janssen, F., A. Lund andL. Anderson: Colorimetric Assay for Dipicolinic Acid in Bacterial Spores. Science127, 26 (1958).

    PubMed  Google Scholar 

  • Johnson, M. J.: A Rapid Micromethod for Estimation of Non-volatile Organic Matter. J. biol. Chem.181, 707 (1949).

    PubMed  Google Scholar 

  • Karlson, P.: Kurzes Lehrbuch der Biochemie, S. 167. Stuttgart: Thieme 1961.

    Google Scholar 

  • Karmen, A.: A Note on the Spectrophotometric Assay of Glutamic-Oxalacetic Transaminase in Human Blood Serum. J. clin. Invest.34, 131 (1955).

    PubMed  Google Scholar 

  • Kindaichi, K.: Meikai Kokugo Jiten, p. 632. Tokyo 1961.

  • Korman, S., andH. T. Clarke: Carboxymethylamino Acids and Peptides. J. biol. Chem.221, 122 (1956).

    Google Scholar 

  • Kornberg, H. L., andA. M. Gotto: Formation of Malate from Glykollate by Pseudomonas Ovalis Chester. Nature (Lond.)183, 1791 (1959).

    Google Scholar 

  • Kornberg, H. L., A. M. Gotto andP. Lund: Effect of Growth Substrates on Isocitritase Formation by Pseudomonas ovalis Chester. Nature (Lond.)182, 1430 (1958).

    Google Scholar 

  • Kornberg, H. L., andH. A. Krebs: Synthesis of Cell Constituents from C2-Units by a Modified Tricarboxylic Acid Cycle. Nature (Lond.)179, 988 (1957).

    Google Scholar 

  • Krebs, H. A., and J. M.Lowenstein: Tricarboylic Acid Cycle. In:Greenberg: Metabolic Pathways, Vol. I. New York 1960.

  • Krishna Murty, G. G., andH. O. Halvorson: Effect of Duration of Heating, l-Alanine and Spore Concentration on the Oxydation of Glucose by Spores of Bacillis cereus var. terminalis. J. Bact.73, 235 (1957).

    PubMed  Google Scholar 

  • Lamanna, C., and M. F.Malette: Basic Bacteriology, p. 551. Baltimore 1953.

  • Lawrence, N. L., andH. O. Halvorson: Studies on the Spores of Aerobic Bacteria. III. The D-Amino Acid Content of Spores and Vegetative Cells of Bacillus terminalis. J. Bact.67, 585 (1954).

    PubMed  Google Scholar 

  • Leiner, M.: Die enzymatische Anpassung bei Mikro-Organismen ohne Veränderung des Erbgutes. Ergebn. Mikrobiol.31, 35 (1958).

    Google Scholar 

  • Levine, S., H. J. R. Stevenson, L. A. Chambers andB. A. Kenner: Infrared Spectrophotometry of Enteric Bacteria. J. Bact.65, 10 (1953).

    PubMed  Google Scholar 

  • Martin, H. H., u.J. W. Foster: On the Chromatographic Behavior of Dipicolinic Acid. Arch. Mikrobiol.31, 171 (1958).

    Google Scholar 

  • Martin, H. H., andJ. W. Foster: Biosynthesis of Dipicolinic Acid in Bacillus megaterium. J. Bact.76, 167 (1958).

    PubMed  Google Scholar 

  • Mellon, R. R., andL. M. Anderson: Immunologic Disparities of Spore and Vegetative Stages of Bacillus subtilis. J. Immunol.4, 203 (1919).

    Google Scholar 

  • Metzler, D. E., J. Olivard andE. E. Snell: Transamination of Pyridoxamine and Amino Acids with Glyoxylic Acid. J. Amer. chem. Soc.76, 644 (1954).

    Google Scholar 

  • Mothes, E., D. Gross, H. R. Schütze u.K. Mothes: Zur Biosynthese der Nicotinsäure bei Mycobacterium tuberculosis (Stamm BCG). Naturwissenschaften48, 623 (1961).

    Google Scholar 

  • Nakada, H. I., andS. Weinhouse: Nonenzymatic Transamination with Glyoxylic Acid and various Amino Acids. J. biol. Chem.204, 831 (1953).

    PubMed  Google Scholar 

  • Nakata, H. M., andH. O. Halvorson: Biochemical Changes Occuring during Growth and Sporulation of Bacillus cereus. J. Bact.80, 801 (1960).

    PubMed  Google Scholar 

  • Ochoa, S. J.: Isocitric Dehydrogenase and Carbon Dioxide Fixation. J. biol. Chem.159, 243 (1945).

    Google Scholar 

  • Ochoa, S. J.: Biosynthesis of Tricarboxylic Acids by Carbon Dioxide Fixation. J. biol. Chem.174, 133 (1948).

    Google Scholar 

  • Ochoa, S., A. H. Mehler andA. Kornberg: Biosynthesis of Dicarboxylic Acids by Carbon dioxide Fixation. J. biol. Chem.174, 979 (1948).

    Google Scholar 

  • Olson, J. A.: The d-iso-Citric Lyase System: The Formation of Glyoxylic and Succinic Acids from d-iso-Citric Acid. Nature (Lond.)174, 695 (1954).

    Google Scholar 

  • Perry, J. J., andJ. W. Foster: Studies on the Biosynthesis of Dipicolinic Acid in Spores of Bacillus cereus var. mycoides. J. Bact.69, 337 (1955).

    PubMed  Google Scholar 

  • Perry, J. H., andJ. W. Foster: Monoethyl Ester of Dipicolinic Acid from Bacterial Spores. J. Bact.72, 295 (1956).

    PubMed  Google Scholar 

  • Powell, J. F.: Isolation of Dipicolinic Acid (Pyridine-2,6-dicarboxylic Acid) from Spores of Bacillus megaterium. Biochem. J.54, 210 (1953).

    PubMed  Google Scholar 

  • Powell, J. F.: Chemical Changes Occuring during Spore Germination. In: H.O.Halvorson: Spores, p. 72. Washington 1957.

  • Powell, J. F., andR. E. Strange: Biochemical Changes Occuring during the Germination of Bacterial Spores. Biochem. J.54, 205 (1953).

    PubMed  Google Scholar 

  • Powell, J. F., andR. E. Strange: Biochemical Changes Occuring during Sporulation in B. megaterium in Relation to Germination. Biochem. J.63, 661 (1956).

    PubMed  Google Scholar 

  • Powell, J. F., andR. E. Strange: Synthesis of Dipicolinic Acid fromα,ε-Diketopimelic Acid. Nature (Lond.)184, 878 (1959).

    Google Scholar 

  • Quayle, J. R., andD. B. Keech: Formation of Glycerate from Oxalate by Pseudomonas oxalaticus (OXI) Grown in Oxalate. Nature (Lond.)183, 1794 (1959).

    Google Scholar 

  • Reeves, H. C., andS. Ajl: Occurence and Function of Isocitritase and Malate Synthetase in Bacteria. J. Bact.79, 341 (1960).

    PubMed  Google Scholar 

  • Riddle, J. W., P. W. Kabler, B. A. Kenner, R. H. Bordner, S. W. Rockwood andH. J. R. Stevenson: Bacterial Identification by Infrared Spectrophotometry. J. Bact.72, 593 (1956).

    PubMed  Google Scholar 

  • Rode, L. J., andJ. W. Foster: Induced Release of Dipicolinic Acid from Spores of Bacillus megaterium. J. Bact.79, 650 (1960).

    PubMed  Google Scholar 

  • Salles, J. B. V., andS. Ochoa: Further Study of the Properties of the “malic” Enzyme of Pigeon Liver. J. biol. Chem.187, 849 (1950).

    PubMed  Google Scholar 

  • Schlossberger, H.: Über das Verhalten der Chromatinsubstanz und die antigenen Eigenschaften der Sporen von Bacillus sphaericus. Schweiz. Z. Path.14, 509 (1951).

    Google Scholar 

  • Shibata, K., A. A. Benson andM. Calvin: Absorption Spectra of Suspensions of living Microorganisms. Biochem. biophys. Acta15, 461 (1954); ref. in Chem. Abstr.49, 5564e (1955).

    PubMed  Google Scholar 

  • Slepecky, R. A.: Discussion on “Multiple Functions of Dipicolinic Acid”. In: Spores II, p. 171. Minneapolis 1961.

    Google Scholar 

  • Slepecky, R., andJ. W. Foster: Alterations in Metal Content of Spores of Bacillus megaterium and the Effects on some Spores Properties. J. Bact.78, 117 (1959).

    PubMed  Google Scholar 

  • Suzuki, K., andK. Yamasaki: Stabilities of Dipicolinic Acid Complexes with Bivalent Metals. Naturwissenschaften44, 396 (1957).

    Google Scholar 

  • Storck, R., andJ. T. Wachsmann: Enzyme Localization in Bacillus megaterium. J. Bact.73, 784 (1957).

    PubMed  Google Scholar 

  • Tanner, H. A.: Chem. Eng. News38, 42 (1960); ref. in Angew. Chem.72, 791 (1960).

    Google Scholar 

  • Taylor, E. S.: Concentration of Free Amino Acids in the Internal Environment of Various Bacteria and Yeasts. J. gen. Microbiol.1, 86 (1947).

    Google Scholar 

  • Tinneli, R.: Étude de la Biochimie de la Sporulation chez B. megaterium, I. Ann. Inst. Pasteur88, 212 (1955).

    Google Scholar 

  • Tomcsik, J., u.J. B. Baumann-Grace: Sporulation und spezifische Sporangium-Reaktion. Schweiz. Z. allg. Path.21, 914 (1958).

    PubMed  Google Scholar 

  • Udo, S.: Studien über die Zusammensetzung von „Natto“. Bull. Agric. chem. Soc. Japan12, 55 (1936); ref. Chem. Zbl.1937 I, 1579.

    Google Scholar 

  • Warburg, O., u.W. Christian: Isolierung und Kristallisation des Gärungsfermentes Enolase. Biochem. Z.310, 400 (1941).

    Google Scholar 

  • Winkle, S.: Mikrobiologische und Serologische Diagnostik, S. 288. Stuttgart: G. Fischer 1955

    Google Scholar 

  • Woese, C., andH. J. Morowitz: Kinetics of the Release of Dipicolinic Acid from Spores of Bacillus subtilis. J. Bact.76, 81 (1958).

    PubMed  Google Scholar 

  • Zelitch, I., andS. Ochoa: Oxydation and Reduction of Glycolic and Glyoxylic Acids in Plants. I. Glycolic Acid Oxidase. J. biol. Chem.201, 707 (1953).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benger, H. Zur Biosynthese der Dipicolinsäure. Zeitschr. f. Hygiene. 148, 318–344 (1962). https://doi.org/10.1007/BF02161327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02161327

Navigation