, Volume 15, Issue 6, pp 239–244 | Cite as

Origines de la vie

  • I. Grundland
Informationen Theoria


The synthesis of proteins, which contributed to the appearance of life, began on earth during the transition period of reduced earth-atmosphere into that containing free oxygen. Proteins resulted then from condensation between free radicals formed by the components of reduced earth-atmosphere and appeared during photochemical reactions. The actual synthesis of proteins, formed by active contribution of nucleic acids, presents the ways of improvement of the forms of life.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Urey, Proc. Natl. Acad. Sic. US38, 351 (1952).CrossRefGoogle Scholar
  2. 1a.
    A. Dauvillier,Origines de la vie (Masson 1958).Google Scholar
  3. 2.
    A. I. Oparin,The Origin of Life (Dover Publ. New York 1953).Google Scholar
  4. 3.
    J. D. Bernal,The Physical Basis of Life (Rutledge, London 1951).Google Scholar
  5. 4.
    K. Rankama,Isotope geology (Pergamon Press, 1954).Google Scholar
  6. 5.
    N. S. Filipowa, J. chem. Phys.3, 316 (1935).CrossRefGoogle Scholar
  7. 6.
    I. Friedman, Geochim. cosmochim. Acta4, 89 (1953).CrossRefGoogle Scholar
  8. 7.
    G. A. Szajn etW. F. Gaze, Usp. Fiz. Nauk43, 1 (1951).Google Scholar
  9. 8.
    A. Mc Kellar, Publ. Astr. Soc. Pacific59, 186 (1947).CrossRefGoogle Scholar
  10. 9.
    G. Herzberg etJ. G. Phillips, Astrophys. J.108, 163 (1948).CrossRefGoogle Scholar
  11. 10.
    G. von Elbe etB. Lewis, J. Amer. chem. Soc.59, 976 (1937).CrossRefGoogle Scholar
  12. 11.
    B. Lewis etG. von Elbe,Combustion, Flame and Explosions of Gases (New York 1951).Google Scholar
  13. 12.
    N. N. Semenov,Mécanisme de l'oxydation des hydrocarbures simples, XXX Congrès international de Chimie industrielle (Athenas 1957).Google Scholar
  14. 13.
    M. Burton, J. Amer. chem. Soc.58, 1655 (1936).CrossRefGoogle Scholar
  15. 14.
    G. Herzberg etD. A. Ramsay, Trans. Farad. Soc. Discuss. No 14, II (1953).Google Scholar
  16. 15.
    H. W. Melville, Trans. Farad. Soc.28, 885 (1932).CrossRefGoogle Scholar
  17. 16.
    W. Lofb, Ber. Dtsch. chem. Ges.46, 687 (1913).Google Scholar
  18. 17.
    S. L. Miller, Science117, 528 (1953); J. Amer. chem. Soc.77, 2351 (1955); Biochim. biophys. Acta.23, 480 (1957)CrossRefPubMedGoogle Scholar
  19. 18.
    K. Heyns etW. U. F. Cheyer, Naturwiss.44, 385 (1957).CrossRefGoogle Scholar
  20. 19.
    W. Goth etH. Weyssenhoff, Naturwiss.44, 510 (1957).Google Scholar
  21. 20.
    A. L. Dounce, Enzymologia15, 251 (1952).PubMedGoogle Scholar
  22. 21.
    H. Borsook, J. cell. comp. Physiol.47, Suppl. I, 35 (1956).CrossRefGoogle Scholar
  23. 22.
    G. Zubay, Nature182, 1290 (1958).CrossRefPubMedGoogle Scholar
  24. 23.
    A. Michelson, Nature181, 375 (1958).CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1959

Authors and Affiliations

  • I. Grundland

There are no affiliations available

Personalised recommendations