Skip to main content
Log in

Catechine und Hydroxy-flavandiole als Gerbstoffbildner

  • Published:
Experientia Aims and scope Submit manuscript

Summary

From the ranks of the colourless hydroxyflavans, four differenthydroxyflavan-3-ols(catechins and epi-catechins), as well as eight hydroxyflavan-3,4-diols, have so far been encountered in nature. These substances are also procurable by synthesis. On treatment with hot water or dilute acids, they are easily converted into soluble tannins or insoluble phlobaphenes. The mechanism of the self-condensation is explained using catechin via the isolation of a dimerie product. A probable path for the self-condensation of the diols has been indicated. In contrast to the products of their self-condensation, the monomeric polyhydroxyflavans are not real tannins. A particular accumulation of phenolhydroxyl groups in the molecule, the tendency to form supersaturated solutions and low solubility in water in the — generally not attainable — crystalline state are prerequisites for tanning properties. In nature, the self-condensation of polyhydroxyflavans proceeds (e. g. in the wood ofAcacia catechu or in Quebracho Wood) without the assistance of enzymes. Dehydrogenative polymerisation occurs with formation of brown or red phlobaphenes (e.g. in cocoa beam) which are generally insoluble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Freudenberg undL. Purrmann, Liebigs Ann. Chem.431, 274 (1924). Seither sind viele weitere Vorkommen festgestellt worden. (—)-Epicatechin ist der Hauptbestandteil des alkoholisch-wässerigen Extraktes der Früchte von Crataegus oxyacantha (K. Freudenberg undK. Weinges, unveröffentlicht).

    Article  Google Scholar 

  2. K. Freudenberg, Ber. dtsch. chem. Ges.53, 1416 (1920).

    Article  Google Scholar 

  3. M. Tsujimura, Sci. Pap. Inst. phys. chem. Res., Tokyo10, 253 (1929);14, 63 (1930); siehe auchR. Yamamoto, J. agric. chem. Soc. Japan6, 564 (1930).

    Google Scholar 

  4. Y. Oshima, Bull. agric. chem. Soc. Japan15, 109 (1939).

    Google Scholar 

  5. W. Mayer undG. Bauni, Liebigs Ann. Chem.611, 264 (1958).

    Article  CAS  Google Scholar 

  6. F. E. King, J. W. Clark-Lewis undW. F. Forbes, J. chem. Soc.1955, 2948.

  7. D. G. Roux undA. E. Maihs, Nature182, 1798 (1958).

    Article  Google Scholar 

  8. K. Freudenberg undP. Maitland, Liebigs Ann. Chem.510, 193 (1934).

    Article  CAS  Google Scholar 

  9. K. Freudenberg undK. Weinges, Tetrahedron (1960), im Druck.

  10. K. Freudenberg, Karimullah undG. Steinbrunn, Liebigs Ann. Chem.518, 37 (1935).

    Article  CAS  Google Scholar 

  11. K. Freudenberg, H. Fikentscher, M. Harder undO. Schmidt, Liebigs Ann. Chem.444, 135 (1925).

    Article  CAS  Google Scholar 

  12. K. Weinges, Liebigs Ann. Chem.615, 203 (1958).

    Article  CAS  Google Scholar 

  13. F. E. King undW. Bottomley, J. chem. Soc.1954, 1399.

  14. K. Freudenberg undD. G. Roux, Naturwiss.41, 450 (1954).

    Article  CAS  Google Scholar 

  15. D. G. Roux undK. Freudenberg, Liebigs Ann. Chem.613, 56 (1958).

    Article  CAS  Google Scholar 

  16. H. H. Keppler, J. chem. Soc.1957, 2721.

  17. D. G. Roux, Chem. & Ind.1958, 161.

  18. K. Freudenberg undK. Weinges, Angew. Chem.70, 51 (1958); Liebigs Ann. Chem.613, 61 (1958).

    Article  CAS  Google Scholar 

  19. A. K. Ganguly undT. R. Seshadri, Tetrahedron6, 21 (1959).

    Article  Google Scholar 

  20. K. Freudenberg undK. Weinges, unveröffentlicht; vgl.K. Weinges Liebigs Ann. Chem.627, 229 (1959).

    Article  Google Scholar 

  21. A. K. Ganguly undT. R. Seshadri, J. sci. industr. Res. [B]17, 168 (1958).

    Google Scholar 

  22. A. K. Ganguly, T. R. Seshadri undP. Subramanian, Tetrahedron3, 225 (1958).

    Article  CAS  Google Scholar 

  23. D. G. Roux, Nature183, 890 (1959).

    Article  CAS  Google Scholar 

  24. K. Freudenberg,Die Chemie der natürlichen Gerbstoffe (Springer, Berlin 1920), S. 120.

    Book  Google Scholar 

  25. K. Freudenberg undK. Weinges, Liebigs Ann. Chem.590, 140 (1954).

    Article  CAS  Google Scholar 

  26. K. Freudenberg, J. H. Stocker undJ. Porter, Chem. Ber.90, 957 (1957).

    Article  CAS  Google Scholar 

  27. K. Freudenberg undJ. M. Alonso, Liebigs Ann. Chem.612, 78 (1958); vgl.3.

    Article  Google Scholar 

  28. W. Mayer undF. Merger, Chem. & Ind.1959, 486.

  29. D. G. Roux, Vortrag vor «Phenol Group» London, 6. Januar 1959.

  30. K. Freudenberg undK. Weinges, Chem. & Ind.1959, 486.

  31. K. Freudenberg,Die Chemie der natürlichen Gerbstoffe (Springer, Berlin 1920), S. 7, 8.

    Book  Google Scholar 

  32. E. C. Bate-Smith undT. Swain, Chem. & Ind.1953, 377.

  33. K. Freudenberg, Nature183, 1152 (1959).

    Article  PubMed  CAS  Google Scholar 

  34. K. Freudenberg, Chem. Ber.92, LXXXIX (1959);K. Freudenberg undB. Lehmann, Chem. Ber., im Druck.

  35. K. Freudenberg,Die Chemie der natürlichen Gerbstoffe (Springer, Berlin 1920), S. 2 und 22.

    Book  Google Scholar 

  36. Vgl. auch:K. Freudenberg undK. Weinges inThe Flavonoids (herausgegeben vonT. A. Geissman, Pergamon Press), im Druck.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberg, K. Catechine und Hydroxy-flavandiole als Gerbstoffbildner. Experientia 16, 101–105 (1960). https://doi.org/10.1007/BF02158087

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02158087

Navigation