Journal of thermal analysis

, Volume 30, Issue 2, pp 447–455 | Cite as

Thermal Investigation of 1,2-propanediamine complexes of nickel(II) in the solid phase

  • A. Ghosh
  • G. De
  • N. Ray Chaudhuri
Article

Abstract

Thermal studies have been carried out on [NiL3]X2·n H2O, whereL=1,2-propanediamine;X=Cl, Br, SCN, 1/2SO 4 2− and 1/2 SeO 4 2− ; andn= 2, 1.5 and 0. [Ni2L5(NCS)2](SCN)2 and [NiL2SO4] have been synthesized pyrolytically in the solid-state from their mother diamine complexes. The deaquation behaviour of [NiL3]SO4·2 H2O appears interesting, and its monohydrate undergoes a solid-state reaction (88–102°) without mass loss, showing an exothermic peak at 95 °C (ΔH=− 5.1 kJ mole−1).

Keywords

Polymer Physical Chemistry Nickel Inorganic Chemistry Mass Loss 

Zusammenfassung

Thermische Untersuchungen wurden an [NiL3]X2,n H2O ausgeführt, wobeiL-1,2-Propandiamin;X=Cl, Br, SCN, 1/2 SO 4 2− und 1/2 SeO 4 2− ;n=2, 1.5 und 0. [Ni2Ls(NCS)2](SCN)2 und [NiL2SO4] wurden ausgehend von den entsprechenden Diaminkomplexen pyrolytisch im festen Zustand synthetisiert. Das Dehydratisierungsverhalten von [NiL3]SO4·2 H2O scheint interessant zu sein, und beim entsprechenden Monohydrat wird eine ohne Massenverlust verlaufende Festkörperreaktion (88–102°) beobachtet, die sich durch einen exothermen Peak bei 95 °C (ΔH=− 5.1 kJ mol−1) zu erkennen gibt.

Резюме

Проведено термическ ое исследование комплексов типа [N3L32· nН2O, где L=1,2-пропандиамин,Х=Сl, Br, SCN, 1/2 SO 4 2- , 1/2SeO 4 2- , an=2, 1.5 и 0. Комплексы типа [Ni2L5(NCS)2](SCN)2 и [NiL2SO4] были получены в твердом состоянии путем пиролиза соотв етствующих диаминов ых комплексов. Дегидрат ация комплекса [N3L3]SО4·2 Н2О протекает с п отерей одной молекул ы воды, а образующийся моног идрат затем в области темпе ратур 88–102° подвергает ся твердотельной реакц ии без потери веса, показывая при эт ом экзотермический п ик при 95 °С ΔН=− 5.1 кдж·моль−1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. D. George and W. W. Wendlandt, Tex. J. Sci., 14 (1962) 47.Google Scholar
  2. 2.
    T. D. George and W. W. Wendlandt, J. Inorg. Nucl. Chem., 25 (1963) 25.Google Scholar
  3. 3.
    W. W. Wendlandt, Anal. Chim. Acta, 27 (1962) 309.Google Scholar
  4. 4.
    W. W. Wendlandt and L. K. Svenum, J. Inorg. Nucl. Chem., 28 (1966) 393.Google Scholar
  5. 5.
    G. De, P. K. Biswas and N. Ray Chaudhuri, Bull. Chem. Soc. Japan, 56 (1983) 3145.Google Scholar
  6. 6.
    S. Mitra, G. De and N. Ray Chaudhuri, Thermochim. Acta, 66 (1983) 187.Google Scholar
  7. 7.
    S. Mitra, G. Ge and N. Ray Chaudhuri, Thermochim. Acta, 71 (1983) 117.Google Scholar
  8. 8.
    G. De, P. K. Biswas and N. Ray Chaudhuri, J. Chem. Soc. Dalt. Trans. (in press).Google Scholar
  9. 9.
    G. De and N. Ray Chaudhuri, Bull. Chem. Soc. Japan, (communicated).Google Scholar
  10. 10.
    N. F. Curtis and Y. M. Curtis, Aust. J. Chem., 19 (1966) 1423.Google Scholar
  11. 11.
    A. Sabatini and I. Bertini, Inorg. Chem., 4 (1965) 1665.Google Scholar
  12. 12.
    L. Katzin, Nature, 182 (1958) 1013.Google Scholar
  13. 13.
    F. A. Miller and C. H. Wilkins, Anal. Chem., 24 (1952) 1253.Google Scholar
  14. 14.
    G. C. Pimentel and A. L. McClellan, The hydrogen bond, W. H. Freeman and Company, San Francisco, 1960, p. 120.Google Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1985

Authors and Affiliations

  • A. Ghosh
    • 1
  • G. De
    • 1
  • N. Ray Chaudhuri
    • 1
  1. 1.Inorganic Chemistry DepartmentIndian Association for the Cultivation of ScienceCalcuttaIndia

Personalised recommendations