Skip to main content
Log in

Euclidean nonlinear classical field equations with unique vacuum

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the real, Euclidean, classical field equation

$$(\mu ^2 + \Delta )\varphi + \lambda F(\varphi ) = f,\mu ^2 > 0$$

where φ: ℝd→ℝ is suitably small at infinity. We study existence and regularity assuming that λ≧0,FC (ℝ), andaF(a)≧0∀a∈∝. These hypotheses allow strongly nonlinearF and nonunique solutions forf≠0. WhenF′≧0, we prove uniqueness, various contractivity properties, analytic dependence on the coupling constant λ, and differentiability in the external sourcef. For applications in the loop expansion in quantum field theory, it is useful to know that φ is in the Schwartz classL wheneverf is, and we provide a proof of this fact. The technical innovations of the problem lie in treating the noncompactness of Rd, the strong nonlinearity ofF, and the polynomial weights in the seminorms definingL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulware, D., Brown, L.: Tree graphs and classical fields. Phys. Rev.172, 1628–1631 (1968)

    Article  Google Scholar 

  2. Williams, D.N.: The Euclidean loop expansion for massive λΦ 44 : Through one loop. Commun. math. Phys.54, 193–218 (1977)

    Article  Google Scholar 

  3. Jackiw, R.: Quantum meaning of classical field theory. Rev. Mod. Phys.49, 681–706 (1977)

    Article  Google Scholar 

  4. Hopf, E.: Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung. Math. Z.34, 194–233 (1931)

    Article  MathSciNet  Google Scholar 

  5. Moser, J.: A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math.13, 457–468 (1960)

    Google Scholar 

  6. Brézis, H., Strauss, W.A.: Semi-linear second-order elliptic equations inL 1. J. Math. Soc. Japan25, 566–590 (1973)

    Google Scholar 

  7. Schwartz, J.T.: Nonlinear functional analysis. New York: Gordon and Breach 1969

    Google Scholar 

  8. Strauss, W.: On weak solutions of semilinear hyperbolic equations. An. Acad. Brasil, Ci.42, 645–651 (1970)

    Google Scholar 

  9. Treves, F.: Basic linear partial differential equations. New York: Academic Press 1975

    Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  11. Strichartz, R.: Multipliers on fractional Sobolev spaces. J. Math. Mech.16, 1031–1060 (1967)

    Google Scholar 

  12. Mizohata, S.: Lectures on the Cauchy problem. Bombay: Tata Institute Lecture Notes 1965

    Google Scholar 

  13. Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969

    Google Scholar 

  14. Lions, J.L., Magenes, E.: Non homogeneous boundary value problems and applications, Vol. I (translated by P. Kenneth). New York: Springer 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Glimm

Work supported in part by the NSF under Grant No. MCS 7701748

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, J., Williams, D.N. Euclidean nonlinear classical field equations with unique vacuum. Commun.Math. Phys. 63, 13–29 (1978). https://doi.org/10.1007/BF02156127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02156127

Keywords

Navigation