Experientia

, Volume 6, Issue 12, pp 445–456 | Cite as

Hundert Jahre Ionenaustausch

  • H. Deuel
  • F. Hostettler
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Für ein näheres Studium des Ionenaustausches seien folgende Zusammenfassungen empfohlen:M. Randall undJ. Y. Cann, Chem. Reviews7, 369 (1930).CrossRefGoogle Scholar
  2. 1a.
    A. Gehring, Hdb. Bodenkunde8, 183 (1931).Google Scholar
  3. 1b.
    F. Scheffer undP. Schachtschabel, ib., 1. Ergänzungsband 288 (1939).Google Scholar
  4. 1c.
    R. J. Myers et al., Ind. Eng. Chem.33, 697 (1941).CrossRefGoogle Scholar
  5. 1d.
    H. F. Walton, J. Franklin Inst.232, 305 (1941).CrossRefGoogle Scholar
  6. 1e.
    R. J. Myers, Adv. Coll. Sci.1, 317 (1942).Google Scholar
  7. 1f.
    F. J. Myers in:J. Alexander, Coll. Chem.6, 1107 (1946).Google Scholar
  8. 1g.
    W. P. Kelley,Cation Exchange in Soils (New York, 1948).Google Scholar
  9. 1h.
    C. E. Marshall,Colloid Chemistry of the Silicate Minerals (New York, 1949).Google Scholar
  10. 1i.
    G. E. Felton, Adv. Food Research2, 1 (1949).Google Scholar
  11. 1j.
    J. E. Gieseking, Adv. Agronomy1, 159 (1949).Google Scholar
  12. 1k.
    F. C. Nachod (Herausgeber),Ion Exchange, Theory and Application (New York, 1949).Google Scholar
  13. 1l.
    Symposion on Ion Exchange, Ind. Eng. Chem.41, 447 (1949).Google Scholar
  14. 1m.
    R. Kunin, Ind. Eng. Chem.42, 65 (1950); Anal. Chem.21, 87 (1949);22, 64 (1950).CrossRefGoogle Scholar
  15. 1n.
    R. J. Myers inR. E. Burk andO. Grummitt,Frontiers in Colloid Chemistry (New York, 1950).Google Scholar
  16. 1o.
    A. Futterknecht, Ind. chim.36, 219 (1949).Google Scholar
  17. 1p.
    Diskussion der Faraday Soc. (1949) vgl. Koll. Z.116, 171 (1950).Google Scholar
  18. 1.
    H. S. Thompson, J. Roy. Agr. Soc. Engl.11, 68–74 (1850).Google Scholar
  19. 2.
    Earl Cathcart, J. Roy. Agr. Soc. Engl. [2],10, 519 (1874).Google Scholar
  20. 1.
    J. T. Way, J. Roy. Agr. Soc. Engl.11, 313 (1850);13, 123 (1852);15, 491 (1855).Google Scholar
  21. 2.
    Die Angaben über das LebenJ. T. Ways verdanken wir HerrnA. Hobson, O.B.E., Sekretär der Royal Agricultural Society of England.Google Scholar
  22. 1.
    G. Wiegner, J. Soc. Chem. Ind.50, 65 T (1931).Google Scholar
  23. 1.
    J. Liebig, Ann. Chem. Pharm.94, 373 (1855).Google Scholar
  24. 2.
    E. A. Fisher, Trans. Faraday Soc.17, 305 (1922).CrossRefGoogle Scholar
  25. 3.
    G. Gazzeri, 1819;R. Lambruschini, 1830;J. P. Bronner, 1836; vgl.P. Ehrenberg,Bodenkolloide (Dresden 1918).Google Scholar
  26. 3a.
    D. N. Prjanischnikow,Düngerlehre (Berlin 1923).Google Scholar
  27. 4.
    G. Gazzeri,Neue Theorie des Düngers (Leipzig 1823), zit. vonA. Orth, Landw. Versuchsstat.16, 56 (1873).Google Scholar
  28. 5.
    C. Sprengel, Kastners Arch. ges. Naturlehre8, 145 (1826), ref. vonS.A. Waksman, Humus. Baltimore, 1936, p. 37 und 468.Google Scholar
  29. 6.
    J. T. Way, J. Roy. Agr. Soc. Engl.11, 313 (1850).Google Scholar
  30. 6a.
    A. Voelcker,14, 809 (1878).Google Scholar
  31. 1.
    H. Eichhorn, Pogg. Ann. Phys. Chem.105, 126 (1858).Google Scholar
  32. 2.
    H. Eichhorn, Landw. Jb.4, 1 (1875).Google Scholar
  33. 3.
    W. Henneberg undF. Stohmann, Ann. Pharm.107, 152 (1858).Google Scholar
  34. 4.
    E. Peters, Landw. Versuchsstat.2, 113 (1860).Google Scholar
  35. 5.
    A. Frank, Landw. Versuchsstat.8, 45 (1866).Google Scholar
  36. 6.
    W. Pillitz, Z. anal. Chem.14, 55 und 283 (1875).Google Scholar
  37. 7.
    J. Lemberg, Z. Dtsch. geol. Ges.22, 335 (1870);28, 519 (1876).Google Scholar
  38. 8.
    J. M. van Bemmelen, Landw. Versuchsstat.8, 255 (1866);21, 135 (1878);23, 265 (1879);35, 69 (1888);Die Absorption (Dresden 1910).Google Scholar
  39. 9.
    O. Kellner, Landw. Versuchsstat.33, 349 und 359 (1887).Google Scholar
  40. 10.
    Siehe:C. E. Marshall,Colloid Chemistry of the Silicate Minerals (New York, 1949).Google Scholar
  41. 11.
    R. Gans (Ganssen), Jb. Kgl. preuß. geol. Landesanstalt26, 179 (1905). Patente.Google Scholar
  42. 1.
    G. Wiegner, J. Landw.60, 111 und 197 (1912).Google Scholar
  43. 1a.
    Zsigmondy-Festschrift, p. 341 (Dresden 1925); J. Soc. Chem. Ind.50, 65 T (1931); Trans. Third Internat. Congr. Soil Sci.3, 5 (1936); 9. Int. Kongr. Chem., Madrid7 (1934).Google Scholar
  44. 2.
    H. Pallmann, Bodenkundl. Forsch.6, 21 (1938); Erdbaukurs Eidg. Techn. Hochschule, Zürich 1938.Google Scholar
  45. 3.
    H. Jenny, Koll. Beih.23, 428 (1927); J. Phys. Chem.36, 2217 (1932).Google Scholar
  46. 3a.
    H. Jenny undR. F. Reitemeier,39, 593 (1935).Google Scholar
  47. 4.
    W. P. Kelley,Cation Exchange in Soils (New York, 1948).Google Scholar
  48. 5.
    D. J. Hissink, Trans. Faraday Soc.20, 1 (1925).CrossRefGoogle Scholar
  49. 5a.
    S. Mattson, Soil Sci.28, 179 (1929) usw.Google Scholar
  50. 5b.
    S. Mattson undL. Wiklander, Trans. Faraday Soc.36, 306 (1940).CrossRefGoogle Scholar
  51. 5c.
    L. Wiklander, Ann. Roy. Agr. Coll. Sweden14, 1 (1946).Google Scholar
  52. 6.
    J. M. van Bemmelen, Landw. Versuchsstat.21, 135 (1878).Google Scholar
  53. 6a.
    G. Lemberg, Z. Dtsch. geol. Ges.40, 649 (1888).Google Scholar
  54. 6b.
    P. de Mondésir, C. r.115, 316 (1892).Google Scholar
  55. 6c.
    G. Daikuhara, Bull. centr. Agr. Exp. Stat. Japan2, 1 (1914).Google Scholar
  56. 7.
    H. Kappen,Bodenazidität (Berlin 1929).Google Scholar
  57. 7a.
    H. Paver undC. E. Marshall, J. Soc. Chem. Ind.53, 750 T (1934).Google Scholar
  58. 7b.
    J. N. Mukherjee et al., J. Coll. Sci.2, 247 (1947);3, 437 (1948).CrossRefGoogle Scholar
  59. 8.
    F. E. Rice undS. Usugi, Soil Sci.5, 333 (1918).Google Scholar
  60. 9.
    R. Bradfield, J. Amer. Chem. Soc.45, 2669 (1923).CrossRefGoogle Scholar
  61. 9a.
    E. Ramann, Z. Pflanz. Düng. Bodenk. A,4, 217 (1925).Google Scholar
  62. 9b.
    W. P. Kelley undS. M. Brown, Soil Sci.21, 289 (1926).Google Scholar
  63. 10.
    H. Pallmann, Koll. Beih.30, 334 (1930).Google Scholar
  64. 1.
    H. Jenny, J. Coll. Sci.1, 33 (1946).CrossRefGoogle Scholar
  65. 2.
    S. B. Hendricks undW. H. Fry, Soil Sci.29, 457 (1930).Google Scholar
  66. 2a.
    W. P. Kelley, W. H. Dore undS. M. Brown, Soil Sci.31, 25 (1931).Google Scholar
  67. 3.
    C. E. Marshall, Z. Krist.91 A, 433 (1935).Google Scholar
  68. 3a.
    S. B. Hendricks, Ind. Eng. Chem.37, 625 (1945).CrossRefGoogle Scholar
  69. 3b.
    C. E. Marshall,Colloid Chemistry of the Silicate Minerals (New York, 1949).Google Scholar
  70. 3c.
    R. K. Schofield, J. Soil Sci.1, 1 (1949).Google Scholar
  71. 4.
    A. J. Pugh, Soil Sci.37, 403 (1934).Google Scholar
  72. 4a.
    H. Weil-Malherbe undJ. Weiss, J. Chem. Soc.1948, 2164.Google Scholar
  73. 4b.
    L. Pauling,Nature of the Chemical Bond p. 396 (Ithaca, N.Y., 1948).Google Scholar
  74. 5.
    A. L. S. Bär undH. J. C. Tendeloo, Koll. Beih.44, 97 (1936).Google Scholar
  75. 6.
    E. Heymann undI. J. O'Donnell, J. Coll. Sci.4, 395 und 405 (1949).CrossRefGoogle Scholar
  76. 7.
    E. Ungerer, Z. Pflanz. Düng. Bodenk.A 18, 342 (1930);23, 353 (1932); vgl.T. R. E. Kressman undJ. A. Kitchener, J. Chem. Soc.1949, 1190.Google Scholar
  77. 1.
    H. Jenny undA. D. Ayers, Soil Sci.48, 443 (1939).Google Scholar
  78. 2.
    G. Wiegner, J. Soc. Chem. Ind.50, 103 T (1931).Google Scholar
  79. 2a.
    C. E. Marshall undR. S. Gupta, ib.52, 433 T (1933).Google Scholar
  80. 3.
    R. Bradfield, Soil Sci.17, 411 (1924).Google Scholar
  81. 4.
    G. Austerweil, J. Soc. Chem. Ind.53, 185 T (1938).Google Scholar
  82. 4a.
    C. A. Bower undE. Truog, Proc. Soil Sci. Soc. Amer.5, 86 (1940).Google Scholar
  83. 4b.
    H. Jenny undM. M. Engabaly, J. Phys. Chem.47, 399 (1943).CrossRefGoogle Scholar
  84. 5.
    J. C. Whitmore, J. Biol. Chem.56, 751 (1923).Google Scholar
  85. 5a.
    E. Ungerer, Koll. Z.36, 228 (1925).CrossRefGoogle Scholar
  86. 5b.
    N. C. Cernescu, Diss. Eidg. Techn. Hochschule (Zürich 1933).Google Scholar
  87. 5c.
    L. E. Ensminger undJ. E. Gieseking, Soil Sci.48, 467 (1939).Google Scholar
  88. 5d.
    T. R. E. Kressman undJ. A. Kitchener, J. Chem. Soc.1949, 1208.Google Scholar
  89. 6.
    F. Falck, 1877;J. Soyka, 1888, ref. vonP. Ehrenberg, Bodenkolloide (Dresden 1918).Google Scholar
  90. 7.
    H. Pallmann, Bodenkundl. Forsch.6, 21 (1938).Google Scholar
  91. 7a.
    P. Schachtschabel, Koll. Beih.51, 199 (1940).Google Scholar
  92. 8.
    S. Mattson, Soil Sci.25, 289 (1928).Google Scholar
  93. 8a.
    E. Biesalski, Z. anorg. Chem.160, 107 (1927).CrossRefGoogle Scholar
  94. 9.
    L. A. Dean, Adv. Agronomy1, 391 (1949).Google Scholar
  95. 9a.
    M. M. Mortland undJ. E. Gieseking, Soil Sci.68, 391 (1949).Google Scholar
  96. 10.
    P. W. Kelley, W. H. Dore undS. M. Brown, Soil Sci.31, 25 (1931).Google Scholar
  97. 10a.
    G. Austerweil, Bull. Soc. Chim. [4],59, 729 (1932).Google Scholar
  98. 10b.
    U. Hofmann undW. Bilke, Koll. Z.77, 238 (1936).CrossRefGoogle Scholar
  99. 11.
    N. C. Cernescu, Diss., Eidg. Techn. Hochschule (Zürich 1933).Google Scholar
  100. 11a.
    G. Wiegner, J. Soc. Chem. Ind.50, 65 T (1931).Google Scholar
  101. 1.
    R. W. Richardson, Nature164, 916 (1949).PubMedGoogle Scholar
  102. 2.
    F. M. Jaeger, Trans. Faraday Soc.25, 320 (1929).CrossRefGoogle Scholar
  103. 3.
    H. Jenny, Koll. Beih.23, 428 (1927).Google Scholar
  104. 4.
    G. Wiegner undH. Jenny, Koll. Z.42, 268 (1927).CrossRefGoogle Scholar
  105. 4a.
    G. Wiegner undK. W. Müller, Z. Pflanz. Düng. Bodenk. A14, 321 (1929).Google Scholar
  106. 4b.
    T. R. E. Kressman undJ. A. Kitchener, J. Chem. Soc.1949, 1211.Google Scholar
  107. 5.
    O. Samuelson, Diss. (Stockholm 1944), ref. inF. C. Nachod,Ion Exchange, p. 22 (New York 1949).Google Scholar
  108. 6.
    W. Kuhn, Exper.5, 318 (1949).Google Scholar
  109. 6a.
    A. Katchalski,5, 319 (1949).Google Scholar
  110. 6b.
    W. Kuhn et al., Nature165, 514 (1950).Google Scholar
  111. 6c.
    J. W. Breitenbach undH. Karlinger, Mh. Chem.80, 312 (1949).Google Scholar
  112. 6d.
    J. L. Mongar undA. Wassermann, Nature159, 746 (1947).Google Scholar
  113. 7.
    E. Graf, Koll. Beih.46, 237 (1936).Google Scholar
  114. 8.
    F. M. Jaeger, Trans. Faraday Soc.25, 320 (1929).CrossRefGoogle Scholar
  115. 9.
    F. W. Hisschemöller, Rec. Trav. chim.40, 394 (1921).Google Scholar
  116. 9a.
    A. P. Vanselow, Soil Sci.33, 95 (1932).Google Scholar
  117. 9b.
    J. B. Ferguson et al., Can. J. Res. B14, 243 (1936);15, 103 (1937).Google Scholar
  118. 9c.
    H. F. Walton, J. Phys. Chem.47, 371 (1943).CrossRefGoogle Scholar
  119. 9d.
    G. E. Boyd, J. Schubert undA. W. Adamson, J. Amer. Chem. Soc.69, 2818 (1947).CrossRefGoogle Scholar
  120. 9e.
    E. I. Ackeroyd undG. Broughton, J. Phys. Chem.42, 343 (1938).CrossRefGoogle Scholar
  121. 10.
    A. Renold, Koll. Beih.43, 1 (1935).Google Scholar
  122. 11.
    H. Jenny undR. Overstreet, Proc. Nat. Acad. Sci.24, 384 (1938); J. Phys. Chem.43, 1185 (1939); Soil Sci.47, 257 (1939).Google Scholar
  123. 1.
    N. M. Comber, J. Agr. Sci.12, 363 (1922).Google Scholar
  124. 1a.
    J. Møller, Koll Beih.46 1 (1937).Google Scholar
  125. 1b.
    D. R. Hoagland,Inorganic Nutrition of Plants (Waltham, Mass., 1944).Google Scholar
  126. 2.
    K. K. Gedroiz,Der absorbierende Bodenkomplex (Dresden 1929).Google Scholar
  127. 3.
    D. J. Hissink, Landw. Versuchsstat.81, 377 (1913).Google Scholar
  128. 3a.
    L. D. Baver, Soil Physics (New York, 1948).Google Scholar
  129. 4.
    H. F. Winterkorn, J. Geol.50, 291 (1942).Google Scholar
  130. 4a.
    E.A. Hausee undD. S. Le Beau in:J. Alexander, Coll. Chem.6, 191 (1946).Google Scholar
  131. 5.
    S. Odén, Koll. Beih.11, 75 (1919).Google Scholar
  132. 6.
    F. Fischer undW. Fuchs, Brennstoff-Chem.8, 291 (1927).Google Scholar
  133. 7.
    Patente vonO. Liebknecht (1936) undP. Smit (1939).Google Scholar
  134. 7a.
    H. L. Tiger, Trans. Amer. Soc. Mech. Eng.60, 315 (1938).Google Scholar
  135. 7b.
    Graphitsäure:U. Hofmann undW. Rüdorff, Trans. Faraday Soc.34, 1017 (1938).CrossRefGoogle Scholar
  136. 7c.
    H. Thiele, Koll. Z.80, 1 (1937).CrossRefGoogle Scholar
  137. 7d.
    H. Hamdi, Koll. Beih.54, 554 (1943).Google Scholar
  138. 8.
    C. L. Hoffpauir undJ. D. Guthrie, J. Biol. Chem.178, 207 (1949).Google Scholar
  139. 9.
    W. Lautsch,Die Chemie 57, 149 (1944).Google Scholar
  140. 10.
    P. Mastagli, G. Austerweil undZ. Zafiriadis, C. r.230, 298 (1950).Google Scholar
  141. 1.
    B.A.Adams undE. L. Holmes, J. Soc. Chem. Ind.54, 1 T, (1935).Google Scholar
  142. 2.
    N. E. Topp undK. W. Pepper, Chem. and Ind.1949, 12; Nature163, 235 (1949);165, 232 (1950).Google Scholar
  143. 3.
    P. J. Flory, Chem. Rev.39, 137 (1946).CrossRefGoogle Scholar
  144. 4.
    R. H. Kienle undA. G. Hovey, J. Amer. Chem. Soc.51, 509 (1929).CrossRefGoogle Scholar
  145. 5.
    H. Staudinger undW. Heuer, Ber.67, 1164 (1934).Google Scholar
  146. 1.
    R. Griessbach, Angew. Chem.52, 215 (1939); Z. Ver. Dtsch. Chem. Beih.31, 1 (1939).Google Scholar
  147. 2.
    E. I. Ackeroyd undG. Broughton, J. Phys. Chem.42, 343 (1938).CrossRefGoogle Scholar
  148. 2a.
    G. Austerweil, Bull. Soc. Chim. [5]6, 55 (1939).Google Scholar
  149. 2b.
    R. J. Myers et al., Ind. Eng. Chem.33, 697 und 1270 (1941).CrossRefGoogle Scholar
  150. 2c.
    W. C. Bauman et al., Ind. Eng. Chem.38, 46 (1946); J. Amer. Chem. Soc.69, 2830 (1947); Ind. Eng. Chem.40, 1350 (1948); zahlreiche Patente.CrossRefGoogle Scholar
  151. 1.
    F. J. Myers in:J. Alexander, Coll. Chem.6, 117 (1946).Google Scholar
  152. 1a.
    E. R. Tompkins, J. Chem. Ed.26, 32 und 92 (1949).Google Scholar
  153. 2.
    Chem. Eng. News28, 1199 (1950).Google Scholar
  154. 2a.
    D. E. Weiss, Nature,166, 66 (1950).Google Scholar
  155. 3.
    H. G. Cassidy, J. Amer. Chem. Soc.71, 402 (1949).CrossRefGoogle Scholar
  156. 3a.
    I.H. Updegraff undH. G. Cassidy,71, 407 (1949).CrossRefGoogle Scholar
  157. 4.
    P. H. Gregor undJ. I. Bregman, J. Amer. Chem. Soc.70, 2370 (1948).CrossRefGoogle Scholar
  158. 5.
    C. Boedecker, J. Landw.3, 48 (1859).Google Scholar
  159. 6.
    G. Wiegner, J. Soc. Chem. Ind.50, 103 T (1931).Google Scholar
  160. 6a.
    H. Jenny, Koll. Beih.23, 428 (1927).Google Scholar
  161. 6b.
    G. Wiegner undH. Jenny, Koll. Z.42, 268 (1927).CrossRefGoogle Scholar
  162. 6c.
    G. Wiegner undK. W. Müller, Z. Pflanz. Düng. Bodenk. A14, 321 (1929).Google Scholar
  163. 6d.
    A. Renold, Koll. Beih.43, 1 (1935).Google Scholar
  164. 6e.
    E. Graf, Koll. Beih.46, 229 (1937).Google Scholar
  165. 7.
    P. Vageler undJ. Woltersdorff, Z. Pflanz. Düng. Bodenk. A15, 329 (1930).Google Scholar
  166. 8.
    L. Weisz, Diss. Eidg. Techn. Hochschule, (Zürich 1932).Google Scholar
  167. 8a.
    P. Vageler,Kationen- und Wasserhaushalt des Mineralbodens (Berlin 1932).Google Scholar
  168. 8b.
    C. E. Marshall undR. S. Gupta, J. Soc. Chem. Ind.52, 433 T (1933).Google Scholar
  169. 1.
    C.E. Marshall,Colloid Chemistry of the Silicate Minerals (New York 1949), p. 123.Google Scholar
  170. 2.
    W.D. Treadwell, Helv. chim. acta6, 559 (1923).CrossRefGoogle Scholar
  171. 3.
    E.J.W. Verwey, Rec. trav. chim.61, 127 (1942).Google Scholar
  172. 3a.
    W.M. Latimer, K.S. Pitzer undC.M. Slansky, J. Chem. Phys.7, 108 (1939).CrossRefGoogle Scholar
  173. 4.
    W. Kerr, Soil Sci.26, 385 (1928).Google Scholar
  174. 4a.
    J.R. Patton undJ.B. Ferguson, Can. J. Res. B15, 103 (1937).Google Scholar
  175. 4b.
    S.W. Melsted undR.H. Bray, Soil Sci.63, 209 (1947).Google Scholar
  176. 5.
    R. Gans, Jb. Kgl. preuß. geol. Landesanstalt26, 179 (1905); Zbl. Min. Geol. Paläont.1913, 699 und 728;1914, 273 und 299.Google Scholar
  177. 5a.
    E. Ramann undA. Spengel, Landw. Versuchsstat.92, 127 (1919).Google Scholar
  178. 6.
    A. Günther-Schulze, Z. phys. Chem.89, 168 (1914).Google Scholar
  179. 6a.
    J.M. Kolthoff, Koll. Z.30, 35 (1922).CrossRefGoogle Scholar
  180. 7.
    V. Rothmund undG. Kornfeld, Z. El'chem.23, 173 (1917); Z. anorg. Chem.103, 129 (1918);108, 215 (1919); s. auch topochemische Untersuchungen vonV. Kohlschütter in:H. W. Kohlschütter undL. Sprenger, Angew. Chem.52, 197 (1939).Google Scholar
  181. 7a.
    W. Feitknecht, ib.52, 202 (1939).Google Scholar
  182. 1.
    G. Austerweil, C. r.193, 1013 (1931); Bull. Soc. Chim. [4]51, 729 (1932).Google Scholar
  183. 2.
    S. Mattson, Soil Sci.28, 179 (1929).Google Scholar
  184. 2a.
    L.E. Davis, Soil Sci.54, 199 (1942).Google Scholar
  185. 3.
    H. Jenny, J. Phys. Chem.40, 501 (1936).CrossRefGoogle Scholar
  186. 3a.
    H. Jenny undA. D. Ayers, Soil Sci.48, 443 (1939).Google Scholar
  187. 3b.
    L. E. Davis, J. Phys. Chem.49, 473 (1945).CrossRefGoogle Scholar
  188. 4.
    L. E. Davis, Soil Sci.59, 379 (1945).Google Scholar
  189. 4a.
    W. Juda undM. Carron, J. Amer. Chem. Soc.70, 3295 (1948).Google Scholar
  190. 5.
    H. W. Kerr, J. Amer. Soc. Agr.20, 309 (1928); Soil Sci.26, 385 (1928).Google Scholar
  191. 6.
    A. P. Vanselow, Soil Sci.33, 95 (1932); J. Amer. Chem. Soc.54, 1307 (1932).Google Scholar
  192. 6a.
    J. Møller, Koll. Beih.46, 1 (1937).Google Scholar
  193. 6b.
    C. du Rietz, Diss., T. H. (Stockholm 1938).Google Scholar
  194. 7.
    J. Kjelland, J. Soc. Chem. Ind.54, 232 T (1935).Google Scholar
  195. 1.
    G. E. Boyd, J. Schubert undA. W. Adamson, J. Amer. Chem. Soc.69, 2818 (1947).CrossRefGoogle Scholar
  196. 1a.
    H. F. Walton inF. C. Nachod,Ion Exchange (New York, 1949), p. 17.Google Scholar
  197. 2.
    T.R.E. Kressman undJ.A. Kitchener, J. Chem. Soc.1949, 1190 und 1201.Google Scholar
  198. 3.
    C. Krishnamoorthy, L. E. Davis undR. Overstreet, Science108, 439 (1948).Google Scholar
  199. 3a.
    C. Krishnamoorthy undR. Overstreet, Soil Sci.68, 307 (1949);69, 41 und 87 (1950).Google Scholar
  200. 4.
    J. du Domaine, R. L. Swain undO. A. Hougen, Ind. Eng. Chem.35, 546 (1943).CrossRefGoogle Scholar
  201. 4a.
    F. C. Nachod undW. Wood, J. Amer. Chem. Soc.66, 1380 (1944).CrossRefGoogle Scholar
  202. 4b.
    J. E. Walter, J. Chem. Phys.13, 229 und 332 (1945).CrossRefGoogle Scholar
  203. 4c.
    G. E. Boyd, A. W. Adamson undL. S. Myers, J. Amer. Chem. Soc.69, 2836 (1947).CrossRefGoogle Scholar
  204. 4d.
    W. C. Bauman undJ. Eichhorn, J. Amer. Chem. Soc.69, 2830 (1947).CrossRefGoogle Scholar
  205. 4e.
    R. Kunin undR. J. Myers, J. Phys. Coll. Chem.51, 1111 (1947).CrossRefGoogle Scholar
  206. 4f.
    A. W. Adamson undJ. J. Grossman, J. Chem. Phys.17, 1002 (1949).CrossRefGoogle Scholar
  207. 1.
    W. C. Bauman in:F. C. Nachod,Ion Exchange (New York, 1949) p. 45.Google Scholar
  208. 2.
    E. R. Tompkins, J. Chem. Ed.26, 32 und 92 (1949).Google Scholar
  209. 2a.
    H. C. Thomas in:F. C. Nachod,Ion Exchange (New York, 1949), p. 29.Google Scholar
  210. 3.
    R. Gans, Jb. Kgl. preuß. geol. Landesanstalt26, 179 (1905).Google Scholar
  211. 1.
    H. L. Tiger, J. Amer. Water Works Assoc.26, 357 (1934), ref. in: Chem. Zbl.1934, II, 1176.Google Scholar
  212. 1a.
    A. S. Behrman, Ind. Eng. Chem.19, 445 (1927).CrossRefGoogle Scholar
  213. 1b.
    E. Seyb, Chem. Fabrik13, 30 (1940).Google Scholar
  214. 1c.
    E. Jaag, Textilrundschau1, 99 (1946).Google Scholar
  215. 2.
    H. Inglesen undB.A. Adams, J. Soc. Chem. Ind.50, 123T (1931).Google Scholar
  216. 3.
    S. Mattson, Acta agr. Suecana2, 185 (1946).Google Scholar
  217. 4.
    J. D. Loconti undZ. I. Kertész, Food Res.6, 499 (1941).Google Scholar
  218. 5.
    M. Lüdtke, Holz5, 338 (1942).Google Scholar
  219. 6.
    B. A. Adams undE. L. Holmes, J. Soc. Chem. Ind.54, 1 T (1935).Google Scholar
  220. 6a.
    R.H. Beaton undC. C. Furnas, Ind. Eng. Chem.33, 1500 (1941).CrossRefGoogle Scholar
  221. 6b.
    H. L. Tiger undS. Sussman, ib.35, 186 (1943).CrossRefGoogle Scholar
  222. 6c.
    F. C. Nachod undS. Sussman, J. Chem. Ed.21, 56 (1944).Google Scholar
  223. 7.
    Mixed-bed de-ionization: Nature165, 794 (1950).Google Scholar
  224. 7a.
    Resinous Reporter (Rohm &Haas Co.)9, No. 4, 18 (1948).Google Scholar
  225. 8.
    H. L. Tiger et al., Ind. Eng. Chem.38, 1130 (1946).CrossRefGoogle Scholar
  226. 9.
    E. Baur, Helv. chim. acta25, 1202 (1942).CrossRefGoogle Scholar
  227. 10.
    H. Adler et al., Ind. Eng. Chem.30, 163 (1938).CrossRefGoogle Scholar
  228. 1.
    K. P. Oakley undC. R. Hoskins, Nature165, 379 (1950).Google Scholar
  229. 2.
    A. Rümpler, Chem. Ztg.27, 1078 (1903).Google Scholar
  230. 3.
    J. W. Michener et al., Ind. Eng. Chem.42, 643 (1950).CrossRefGoogle Scholar
  231. 4.
    J. W. Ryznar in:J. Alexander, Coll. Chem.6, 1113 (1946).Google Scholar
  232. 5.
    O. Samuelson, Diss. (Stockholm 1944), ref. in:R. Kunin, Anal. Chem.21, 87 (1949).CrossRefGoogle Scholar
  233. 6.
    R. J. Myers et al., Ind. Eng. Chem.33, 1270 (1941).CrossRefGoogle Scholar
  234. 7.
    W. E. Cohn undH. W. Kohn, J. Amer. Chem. Soc.70, 1986 (1948).CrossRefGoogle Scholar
  235. 7a.
    J. Beukenkamp undW. Rieman, Anal. Chem.22, 582 (1950).CrossRefGoogle Scholar
  236. 8.
    T. I. Taylor undH. C. Urey, J. Chem. Phys.5, 597 (1937);6, 429 (1938).CrossRefGoogle Scholar
  237. 8a.
    Isotope eignen sich zum Studium des Ionenaustauschs:J. W. Borland undR. F. Reitemeier, Soil Sci.69, 251 (1950).Google Scholar
  238. 9.
    A. Tiselius et al., Exper.3, 21 (1947).Google Scholar
  239. 9a.
    R. J. Block in:F. C. Nachod,Ion Exchange (New York, 1949), p. 295.Google Scholar
  240. 9b.
    C. S. Cleaver undH. G. Cassidy, J. Amer. Chem. Soc.27, 1147 (1950).CrossRefGoogle Scholar
  241. 10.
    W. E. Cohn, Science109, 377 (1949).Google Scholar
  242. 11.
    R. J. McColloch undZ. I. Kertész, J. Biol. Chem.160, 149 (1945).Google Scholar
  243. 12.
    Siehe J. Amer. Chem. Soc.69, No. 11 (1947) mit 12 Arbeiten desPlutonium Project und drei weiteren Arbeiten;J. Schubert undJ. W. Richter, ib.70, 4259 (1948).Google Scholar
  244. 12a.
    W. E. Cohn et al., Nucleonics3, No. 5, 22 (1948).Google Scholar
  245. 12b.
    E. W. R. Steacie undA. Cameron, Research2, 225 (1949).Google Scholar
  246. 1.
    E. R. Tompkins, J. Amer. Chem. Soc.70, 3520 (1948).Google Scholar
  247. 2.
    J. A. Marinsky et al., J. Amer. Chem. Soc.69, 2781 (1947).CrossRefGoogle Scholar
  248. 3.
    Chem. Eng. News28, 326 (1950).Google Scholar
  249. 4.
    P. Siedler, 1909, ref. in:F. C. Nachod,Ion Exchange (New York, 1949), p. 232.Google Scholar
  250. 4a.
    O. Samuelson, Z. anal. Chem.116, 328 (1939).Google Scholar
  251. 4b.
    H. Blumer, Exper.4, 351 (1948).Google Scholar
  252. 5.
    O. Folin undR. D. Bell, J. Biol. Chem.29, 329 (1917); ref. in Chem. Zbl.1917, II, 771.Google Scholar
  253. 6.
    J. U. Kubli, Diss., Eidg. Techn. Hochschule (Zürich 1925).Google Scholar
  254. 6a.
    I. M. Kolthoff undE. B. Sandell,Quantitative Inorganic Analysis (New York, 1949), p. 115.Google Scholar
  255. 7.
    K. Fajans undO. Hassel, Z. El'chem.29, 495 (1923).Google Scholar
  256. 7a.
    I. M. Kolthoff, Koll. Z.68, 190 (1934).CrossRefGoogle Scholar
  257. 7b.
    E. J. W. Verwey, ib.72, 187 (1935).CrossRefGoogle Scholar
  258. 8.
    M. Dole,Glass Electrode (New York, 1941).Google Scholar
  259. 9.
    C. E. Marshall, J. Phys. Chem.43, 1155 (1939);52, 1284 (1948).CrossRefGoogle Scholar
  260. 10.
    T. R. E. Kressman, Nature165, 568 (1950).Google Scholar
  261. 11.
    S. W. Challinor, M. E. Kieser undA. Pollard, Nature161, 1023 (1948).Google Scholar
  262. 12.
    F. S. Schlenker, Amer. J. Bot.27, 525 (1940); ref. in: Chem. Zbl.1940, II, 3199.Google Scholar
  263. 12a.
    D. I. Arnon undK. A. Grossenbacher, Soil Sci.63, 159 (1947).Google Scholar
  264. 13.
    A. Steinberg, Proc. Soc. Exptl. Biol. Med.56, 124 (1944).Google Scholar
  265. 14.
    J. F. Lyman et al., Ind. Eng. Chem.25, 1297 (1933).CrossRefGoogle Scholar
  266. 14a.
    H. E. Otting, ib.41, 457 (1949).CrossRefGoogle Scholar
  267. 15.
    G. J. Martin undJ. Wilkinson, Gastroenterology6, 315 (1946).Google Scholar
  268. 16.
    F. E. Rice undS. Usugi, Soil Sci.5, 333 (1918).Google Scholar
  269. 16a.
    W. Rothmund, Z. El'chem.32, 367 (1926).Google Scholar
  270. 16b.
    A. O. Jaeger, Ind. Eng. Chem.21, 627 (1929).CrossRefGoogle Scholar
  271. 16c.
    S. Sussman, ib.38, 1228 (1946).CrossRefGoogle Scholar
  272. 16d.
    V. C. Haskell undL. P. Hammett, J. Amer. Chem. Soc.71, 1284 (1949).Google Scholar

Copyright information

© Birkhäuser Verlag AG 1950

Authors and Affiliations

  • H. Deuel
    • 1
  • F. Hostettler
    • 1
  1. 1.Agrikulturchemisches Institut der Eidg. Technischen HochschuleZürich

Personalised recommendations