Skip to main content
Log in

The alkali burned cornea: electron microscopical, enzyme histochemical, and biochemical observations

  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The early phase of wound healing after small central alkali burns of the guinea pig cornea was studied using electron microscopical, enzyme histochemical, and biochemical techniques. In the first phase, which was morphologically characterized by the destruction of the epithelium and keratocytes and by the infiltration of the cornea with polymorphonuclear leukocytes, an increase in the activity of lysosomal phosphatases and glycosidases (β-d-glucuronidase, acid β-d-galactosidase, β-d-N-acetylglucosaminidase) was noticed. In the second phase, the cornea was invaded by capillaries and fibroblasts. In this phase, the activity of proteases (aminopeptidase M, dipeptidyl peptidase IV) increased intra- and extracellularly, suggesting that these enzymes may be involved in the turnover of the collagenous matrix and the ground substance. Using synthetic 4-methoxy-2-naphthylamine substrates and fluorescence-band detection techniques after isoelectric focusing, an increase in the activity of endopeptidases was demonstrated. The decreased activity of γ-glutamyl transpeptidase may be linked with the activation of latent collagenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman M, Leary R, Gage J (1977) Latent collagenase in the ulcerating rabbit cornea. Exp Eye Res 25:435–445

    Google Scholar 

  • Berman M, Leary R, Gage J (1979) Collagenase from corneal cell cultures and its modulation by phagocytosis. Invest Ophthalmol Vis Sci 18:588–601

    PubMed  Google Scholar 

  • Berman M, Leary R, Gage J (1980) Evidence for a role of plasminogen activator-plasmin in corneal ulcerations. Invest Ophthalmol Vis Sci 19:1204–1221

    PubMed  Google Scholar 

  • Berman M, Winthrop S, Ausprunk D, Rose J, Langer R, Gage J (1982) Plasminogen activator (urokinase) causes vascularization of the cornea. Invest Ophthalmol Vis Sci 22:191–199

    PubMed  Google Scholar 

  • Bhattacherjee P, Kulkarni PS, Eakins KE (1979) Metabolism of arachidonic acid in rabbit ocular tissue. Invest Ophthalmol Vis Sci 18:172–178

    PubMed  Google Scholar 

  • Bolkova A, Cejkova J (1984) Relationship between various concentrations of NaOH and metabolic effects in experimentally burned rabbit cornea. A biochemical and histochemical study. Graefe's Arch Clin Exp Ophthalmol 222:86–89

    Google Scholar 

  • Bolkova A, Obenberger J (1976) Changes of activity of alkaline and acid phosphatase in the rabbit eye in the early phase of alkaline and acid injury. Graefe's Arch Clin Exp Ophthalmol 200:251–255

    Google Scholar 

  • Borst RH (1969) Enzymhistochemische Untersuchungen an der regenerierenden Cornea der Ratte nach Hitzekoagulation des Epithels. Ophthalmologica 159:186–201

    PubMed  Google Scholar 

  • Bray MA (1983) The pharmacology and pathophysiology of leukotrine B4. In: Moncada S (ed) Prostacyclin, thromboxane and leukotrienes. Churchill Livingstone, New York, pp 249–254

    Google Scholar 

  • Cejkova J, Lojda Z, Havrankova E (1975a) Distribution of acid phosphatase, β-glucuronidase, N-acetyl-β-d-glucosaminidase and β-galactosidase in the cornea of albino rabbit. Histochemistry 44:337–343

    PubMed  Google Scholar 

  • Cejkova J, Lojda Z, Obenberger J, Havrankova E (1975b) Alkali burns of the rabbit cornea. I. A histochemical study of β-glucuronidase, β-galactosidase and N-acetyl-β-d-glucosaminidase. Histochemistry 45:65–69

    PubMed  Google Scholar 

  • Chayakul V, Reim M (1982) Enzymatic activity of β-N-acetylglucosaminidase in the alkali-burned cornea. Graefe's Arch Clin Exp Ophthalmol 218:149–152

    Google Scholar 

  • Domarus D von, Naumann GOH (1980) Trauma, Operationen und Wundheilung des Auges. In: Naumann GOH (ed) Pathologie des Auges. Springer, Berlin Heidelberg New York, pp 176–239

    Google Scholar 

  • Gossrau R (1981) Investigation of proteinases in the digestive tract using 4-methoxy-2-naphthylamine (MNA) substrates. J Histochem Cytochem 29:464–480

    PubMed  Google Scholar 

  • Gutschmidt S, Gossrau R (1981) A quantitative histochemical study of dipeptidyl pepetidase IV. Histochemistry 73:285–304

    PubMed  Google Scholar 

  • Hughey RP, Curthoys NP (1976) Comparison of the size and physical properties of γ-glutamyl transpeptidase purified from the rat kidney following solubilization with papain or with TRITON X-100. J Biol Chem 251:7863–7870

    Google Scholar 

  • Kenny AJ (1977) Proteinases associated with cell membranes. In: Barrett (ed) Proteinases in mammalian cells and tissues. North-Holland, Amsterdam New York Oxford, pp 394–443

    Google Scholar 

  • Lewis GP (1983) Immunoregulatory activity of metabolites of arachidonic acid and their role in inflammation. In: Moncada S (ed) Protacyclin, thromboxane and leukotrienes. Churchill Livingstone, New York, pp 243–248

    Google Scholar 

  • LKB instruction for high-performance analytical electrofocusing in 0.5 mm thin layer agarose gels 1818 A

  • LKB instruction for high-performance analytical electrofocusing in 0.5 mm thin layer polyacrylamide gels 1818 P

  • Lojda Z, Gossrau R, Schiebler TH (1979) Enzyme histochemistry. A laboratory manual. Springer, Berlin Heidelberg New York

    Google Scholar 

  • McCartney HW, Tschesche H (1980) Latent collagenase from human polymorphonuclear leucocyte and activation by removal of an inhibitor. FEBS Lettr 119:327–332

    Google Scholar 

  • Matsuda H, Smelser GK (1973) Epithelium and stroma in alkali-burned corneas. Arch Ophthalmol 89:396–401

    PubMed  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52:711–760

    PubMed  Google Scholar 

  • Mochizuki K, Maruyama M, Kitano S (1967) Experimental studies on the burn of the cornea. Report I. Histologic findings on the burns of the cornea with NaOH and HCl. Acta Soc Ophthalmol Jpn 71:1112–1122

    Google Scholar 

  • Oronsky AL, Perper RJ, Schroeder MC (1973) Phagocytic release and activation of human leucocyte procollagenase. Nature 246:417–419

    PubMed  Google Scholar 

  • Pahlitzsch T (1985) Zytochemische Proteasenuntersuchungen an verätzten Hornhäuten. Verh Anat Ges (in press)

  • Pahlitzsch T, Sinha P (1985) Herpes-simplex keratitis: Einige enzymhistochemische Beobachtungen. Klin Monatsbl Augenheilkd (in press)

  • Pahlitzsch T, Sinha P, Gossrau R (1984) Zu Zytochemie von Hydrolasen in der menschlichen Cornea. Verh Anat Ges 78:487–488

    Google Scholar 

  • Perez-Tamayo R (1978) Collagen degradation. Am J Pathol 92:508–566

    PubMed  Google Scholar 

  • Reim M (1977) Toxicologische Testung an Hornhaut, Bindehaut und Tränen. In: Hockwin O, Koch H-R (eds) Arzneimittelnebenwirkungen am Auge. Gustav-Fischer, Stuttgart, pp 226–246

    Google Scholar 

  • Reim M, Schmidt-Martens FW, Hörster B, Scheidhauer E (1980) Morphologische und biochemische Befunde bei experimenteller Verätzung mit Alkali. Dtsch Ophthalmol Ges 77:749–759

    Google Scholar 

  • Reim R, Conze A, Kaszuba HJ (1982) Adenosine phosphate and glutathione levels in the regenerated corneal epithelium after abrasions and mild alkali burns. Graefe's Arch Clin Exp Ophthalmol 218:42–45

    Google Scholar 

  • Sellers A, Murphy G (1981) Collagenolytic enzymes and their naturally occurring inhibitors. Int Rev Conn Tiss Res 9:151–190

    Google Scholar 

  • Sinha P, Gossrau R (1984) Isoelectric focusing (IEF) and band detection with fluorogenic protease substrates. Histochemistry 81:167–169

    PubMed  Google Scholar 

  • Sopata I, Wojtecka-Lukasik E, Daniewicz AM (1974) Solubilization of collagen fibrils by human leucocyte collagenase activated by rheumatoid synovial fluid. Acta Biochim Pol 27:283–289

    Google Scholar 

  • Srinivasan BD, Kulkarni PS (1980) The role of arachidonic acid metabolites in the mediation of PMN response following corneal injury. Invest Ophthalmol Vis Sci 19:1087–1093

    PubMed  Google Scholar 

  • Sullmann H, Payot P (1949) Histochemische Untersuchungen über alkalische Phosphatase in der Cornea. Ophthalmologica 118:345–355

    PubMed  Google Scholar 

  • Taylor GW, Morris AR (1983) Lipooxygenase pathways. In: Moncada S (ed) Prostacyclin, thromboxane and leukotrienes. Churchill Livingstone, New York, pp 219–222

    Google Scholar 

  • Tschesche H (1983) Structure and function of natural inhibitors as antagonists of protease activities. In: Hörl WH, Heidland A (eds) Proteases: potential role in health and disease. Plenum Press, New York London, pp 73–87

    Google Scholar 

  • Vrabec F, Obenberger J (1976) Ring-shaped alkali burns of the rabbit cornea. II. Early changes of the corneal stroma. Graefe's Arch Clin Exp Ophthalmol 198:121–128

    Google Scholar 

  • Vrabec F, Obenberger J, Vrabec J (1975) Ring-shaped alkali burns of the rabbit cornea. Epithelial and endothelial changes. Graefe's Arch Clin Exp Ophthalmol 197:233–240

    Google Scholar 

  • Weiss JB (1976) Enzymic degradation of collagen. Int Rev Conn Tiss Res 7:73–87

    Google Scholar 

  • Williams RN, Bhattacherjee P, Eakings KE (1983) Biosynthesis of lipooxygenase products by ocular tissues. Exp Eye Res 36:397–402

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahlitzsch, T., Sinha, P. The alkali burned cornea: electron microscopical, enzyme histochemical, and biochemical observations. Graefe's Arch Clin Exp Ophthalmol 223, 278–286 (1985). https://doi.org/10.1007/BF02153659

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02153659

Keywords

Navigation