General Relativity and Gravitation

, Volume 27, Issue 12, pp 1309–1321 | Cite as

Almost-homogeneity of the universe in higher-order gravity

  • David R. Taylor
  • Roy Maartens
Article

Abstract

In the R+αR2 gravity theory, we show that if freely propagating massless particles have an almost isotropic distribution, then the spacetime is almost Friedmann-Robertson-Walker (frw). This extends the result proved recently in general relativity (α = 0), which is applicable to the microwave background after photon decoupling. The higher-order result is in principle applicable to a massless species that decouples in the early universe, such as a relic graviton background. Any future observations that show small anisotropies in such a background would imply that the geometry of the early universe were almostfrw.

Keywords

Microwave Anisotropy General Relativity Differential Geometry Early Universe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoeger, W. R., Maartens, R., and Ellis, G. F. R. (1995).Astrophys. J. 443, 1.Google Scholar
  2. 2.
    Ehlers, J., Geren, P., and Sachs, R. K. (1968).J. Math. Phys. 9, 1344.Google Scholar
  3. 3.
    Maartens, R., and Taylor, D. R. (1994).Gen. Rel. Grav. 26, 599; Erratum in (1995).Gen. Rel. Grav. 27, 113.Google Scholar
  4. 4.
    Barrow, J. D., and Ottewill, A. (1983).J. Phys. A 16, 2757.Google Scholar
  5. 5.
    Mijić, M. B., Morris, M. S., and Suen, W. M. (1986).Phys. Rev. D 34, 2934.Google Scholar
  6. 6.
    Ellis, G. F. R. (1971). InGeneral Relativity and Cosmology, R. K. Sachs, ed. (Academic, New York).Google Scholar
  7. 7.
    Ellis, G. F. R., Matravers, D. R., and Treciokas, R. (1983).Ann. Phys. (NY) 150, 455.Google Scholar
  8. 8.
    Barrow, J. D., and Cotsakis, S. (1988).Phys. Lett. B 214, 515Google Scholar
  9. 9.
    Barrow, J. D. (1988).Nucl. Phys. B 296, 697.Google Scholar
  10. 10.
    Bruni, M., Dunsby, P. K. S., and Ellis, G. F. R. (1992).Astrophys. J. 395, 34.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • David R. Taylor
    • 1
    • 2
  • Roy Maartens
    • 2
    • 3
  1. 1.Department of Computational and Applied MathematicsWitwatersrand UniversitySouth Africa
  2. 2.School of MathematicsPortsmouth UniversityEngland
  3. 3.Centre for Nonlinear StudiesWitwatersrand UniversitySouth Africa

Personalised recommendations