Skip to main content
Log in

Genetic aspects of toxic chemical degradation

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

All naturally occurring molecules are continuously being recycled in nature, constantly being synthesized, and constantly being degraded. Synthetic molecules on the other hand, often are unable to enter nature's recycling scheme because organisms that have an ability to degrade these xenobiotic compounds simply do not exist. Moreover, many synthetic chemicals are not only recalcitrant to biodegradation, but also are toxic and therefore can cause significant pollution problems even at very low concentrations. The chemical industry will continue to produce an evergrowing number of molecules, even though severe environmental problems have resulted from synthetic molecules already produced. We must find a means of bringing synthetic molecules back into nature's recycling systems if we are to preserve the environment. Biotechnology, through the genetic manipulation of microorganisms, provides a means of accomplishing this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth P, Datta N, Hedges R, Grintner N (1976) Transposition of a deoxyribonucleotide acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J Bacteriol 125:800–810.

    PubMed  Google Scholar 

  2. Betz JL, Brown PR, Smyth MJ, Clarke PH (1974) Evolution in action. Nature (London) 247: 261–264

    Google Scholar 

  3. Burger KJ, Schinzel R (1983) Restriction endonuclease Bg/1 as a tool forin vitro reconstruction and recombination of plasmid and bacteriophage genomes. Mol Gen Genet 189:269–274

    PubMed  Google Scholar 

  4. Campbell JH, Lengyel JA, Langridge J (1973) Evolution of a second gene for β-galactosidase inEschericia coli. Proc Natl Acad Sci (USA) 70:1841–1845

    Google Scholar 

  5. Camyre KP, Mortlock RP (1965) Growth ofAerobacter aerogenes on D-arabinose and L-xy-lose. J Bacteriol 90:1157–1158

    PubMed  Google Scholar 

  6. Cesarini G, Muesing MA, Polisky B (1982) Control of ColE1 DNA replication: therop gene product negatively affects transcription from the replication primer promoter. Proc Natl Acad Sci (USA) 79:6313–6317

    Google Scholar 

  7. Chakrabarty AM (1978) Molecular mechanisms in the biodegradation of environmental pollutants. ASM News 44:687–690

    Google Scholar 

  8. Francis JC, Hansche PE (1972) Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum inSaccharomyces cerevisiae. Genetics 70:59–73

    PubMed  Google Scholar 

  9. Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of rhizobium mutants. Gene 18:289–296

    PubMed  Google Scholar 

  10. Hall BG (1976) Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebg) and evolved (ebg) enzymes. J Mol Biol 107:71–84

    PubMed  Google Scholar 

  11. Hall BG, Clarke ND (1977) Regulation of newly evolved enzymes. III. Evolution of theebg repressor during selection for enhanced lactase activity. Genetics 85:193–201

    PubMed  Google Scholar 

  12. Hartley BS (1974) Enzymes families. Symp Soc Gen Microbiol 24:151–182

    Google Scholar 

  13. Inderlied CB, Mortlock RP (1977) Growth ofKlebsiella aerogenes on xylitol: implications for bacterial enzyme evolution. J Mol Evol 9:181–190

    PubMed  Google Scholar 

  14. Kaufman D, Kearney P (1976) Physiology, biochemistry and ecology, vol. 2. In: Andus L (ed) Herbicides. Academic Press, London, p 29

    Google Scholar 

  15. Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135

    PubMed  Google Scholar 

  16. Kemper J (1974) Evolution of a new gene substituting for theleuD gene ofSalmonella typhimurium: characterization ofsupQ mutations. J Bacteriol 119:937–951

    PubMed  Google Scholar 

  17. Kemper J (1974) Evolution of a new gene substituting forleuD gene ofSalmonella typhimurium: origin and nature ofsupQ andnewD mutations. J Bacteriol 120:1176–1185

    PubMed  Google Scholar 

  18. Kikuchi A, Gorini L (1975) Similarity of genes argE and argI. Nature (London) 256:621–623.

    Google Scholar 

  19. Kilbane JJ, Malamy MH (1980) F. factor mobilization of nonconjugative chimeric plasmids inEscherichia coli general mechanisms and a role for site-specific recA-independent recombination atoriV1. J Mol Biol 143:73–93

    PubMed  Google Scholar 

  20. Kilbane, JJ, Chatterjee DK, Kams JS, Kellogg ST, Chakrabarty AJ (1982) Biodegradation of 2,4-5-trichlorophenoxyacetic acid by a pure culture ofPseudomonas cepacia. Appl Environ Microbiol 44:72–78

    PubMed  Google Scholar 

  21. Kilbane JJ, Chatterjee DK, Chakrabarty AM (1983) Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil byPseudomonas cepacia. Appl Environ Microbiol 45: 1697–1700

    PubMed  Google Scholar 

  22. Knauf VC, Nester EW (1982) Wide host range cloning vectors: a cosmid clone bank of an agrobacterium Ti plasmid. Plasmid 8:45–55

    PubMed  Google Scholar 

  23. Legrain C, Stalon V, Noullez JP, Mercenier A, Simon JP, Broman K, Wiame JM (1977) Structure and functions of ornithine carbamoyltransferases. Eur J Biochem 80:401–409

    PubMed  Google Scholar 

  24. Lehrbach PR, Timmis KN (1983) Genetic analysis and manipulation of catabolic pathways inPseudomonas. In: Phelps CF, Clarke PH (eds) Biochem Soc Symp 48:191–219

  25. Lehrbach PR, Zeyer J, Reineke W, Knackmuss H-J, Timmis KN (1984) Enzyme recruitmentin vitro: use of cloned genes to extend the range of haloaromatics degraded byPseudomonas sp. strain B13. J Bacteriol 158:1025–1032

    PubMed  Google Scholar 

  26. Matthew M (1979) Plasmid-mediated δ-lactamases of gram-negative bacteria: properties and distribution. J Antimicrob Chemother 5:349–358

    PubMed  Google Scholar 

  27. Maugh TH (1978) Chemical carcinogenes: the scientific basis for regulation. Science 201:1200–1205

    PubMed  Google Scholar 

  28. Muesing M, Carpenter CD, Cline WH, Polisky B (1984) High level expression inE. coli of calcium-binding domains of an embryonic sea urchin protein. Gene 31:155–164

    PubMed  Google Scholar 

  29. Oliver EJ, Mortlock RP (1971) Metabolism of D-arabinose byAerobacter aerogenes: purification of the isomerase. J Bacteriol 108:293–299

    Google Scholar 

  30. Reineke W, Knackmuss, H-J (1974) Construction of haloaromatics utilizing bacteria. Nature 277:385–386

    Google Scholar 

  31. Reineke W, Knackmuss H-J (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J Bacteriol 142:467–473

    PubMed  Google Scholar 

  32. Reineke W, Jeenes DJ, Williams PA, Knackmuss H-J (1982) TOL plasmid pWWO in constructed halobenzoate-degradingPseudomonas strains: prevention of meta pathway. J Bacteriol 150:195–201

    PubMed  Google Scholar 

  33. Roth B, Falco E, Hutchings G, Bushby S (1962) 5-benzyl-2,4-diaminopyrimidines as antibacterial agents. I. Synthesis and antibacterial activityin vitro. J Med Pharm Chem 5:1103–1123

    Google Scholar 

  34. Shapiro J, Sporn P (1977) Tn402: a new transposable element determining trimethoprim resistance that inserts in bacteriophage lambda. J Bacteriol 129:1632–1635

    PubMed  Google Scholar 

  35. Shortle DR, Nathans D (1979) Regulatory mutants of simian virus 40: constructed mutants with base substitutions at the origin of DNA replication. J Mol Biol 131:801–807

    PubMed  Google Scholar 

  36. Smyth PF, Clark PH (1975) Catabolite repression ofPseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol 90:81–90

    PubMed  Google Scholar 

  37. Smyth PF, Clarke PH (1975) Catabolite repression ofPseudomonas aeruginosa amidase: isolation of promotor mutants. J Gen Microbiol 90:91–99

    PubMed  Google Scholar 

  38. St. Martin EJ, Mortlock RP (1977) A comparison of alternative metabolic strategies for the utilization of D-arabinose. J Mol Evol 10:111–122

    PubMed  Google Scholar 

  39. Stalon V, Legrain C, Wiame JM (1977) Anabolic ornithine carbamoyltranferase of Pseudomonas. Eur J Biochem 74:319–327

    PubMed  Google Scholar 

  40. Tiedje J, Duxbury J, Alexander M, Dawson J (1969) 2,4-D metabolisms: pathway of degradation of chlorocatechols byArthrobacter sp. J Agric Food Chem 17:1021–1026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilbane, J.J. Genetic aspects of toxic chemical degradation. Microb Ecol 12, 135–145 (1986). https://doi.org/10.1007/BF02153229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02153229

Keywords

Navigation