Skip to main content
Log in

Potential commercial applications in aquatic microbiology

  • Published:
Microbial Ecology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Akedo M, Cooney CL, Sinskey AJ (1981) Bioconversion of propionate to acrylate byClostridium propionicum. In: Moo-Young M, Robinson CW (eds) Advances in biotechnology, Vol 2. Fuels, chemicals, foods and waste treatment. Pergamon Press, Toronto

    Google Scholar 

  2. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–138

    PubMed  Google Scholar 

  3. American Type Culture Collection (1982) Catalogue of Strains I, 15th ed

  4. Anderson JM, Macfadyen (eds) (1976) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific, Oxford

    Google Scholar 

  5. Bachrach U, Bachrach Z (1974) Radiometric method for the detection of conform organisms in water. Appl Microbiol 28:169–171

    PubMed  Google Scholar 

  6. Baird JK, Sandford PA, Cotrell IW (1983) Industrial applications of some new polysaccharides. Biotechnol 1:778–783

    Google Scholar 

  7. Baker CA, Claus GW, Taylor PA (1983) Predominant bacteria in an activated sludge reactor for the degradation of cutting fluids. Appl Envir Microbiol 46:1214–1223

    Google Scholar 

  8. Basta N (1983) New biopolymer vies for many surfactant uses. Chem Eng 90(9):20–22

    Google Scholar 

  9. Basta N (1984) Bipolymers challenge petrochemicals. High Technology 4(2):66–70

    Google Scholar 

  10. Benemann JR, Weare NM (1974) Hydrogen evolution by nitrogen-fixingAnabaena cylindrica cultures. Science 184:174–175

    Google Scholar 

  11. Bergan T (1981) Human- and animal-pathogenic members of the genusPseudomonas. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin

    Google Scholar 

  12. Berkeley RWC, Gooday GW, Ellwood DC (eds) (1979) Microbial polysaccharides and polysaccharases. Academic Press, London

    Google Scholar 

  13. Biotechnology News (1984) 4(11):3–4

  14. Bolag J-M (1982) Microbial metabolism of pesticides. In: Rasazzo JP (ed) Microbial transformations of bioactive compounds, Vol 2. CRC Press Inc, Boca Raton

    Google Scholar 

  15. Boyle CD, Reade AE (1983) Characterization of two extracellular polysaccharides from marine bacteria. Appl Env Microbiol 46:392–399

    Google Scholar 

  16. Brock TD, Brock L (1966) Autoradiography as a tool in microbial ecology. Nature 209:734–736

    PubMed  Google Scholar 

  17. Broderick LS, Cooney JJ (1982) Emulsification of hydrocarbons by bacteria from freshwater ecosystems. Dev Ind Microbiol 23:425–434

    Google Scholar 

  18. Bushell ME (ed) (1983) Microbial polysaccharides. Prog Ind Microbiol, Vol 18

  19. Chemical Business (1984) 6(5):8

  20. Christensen JP, Packard TT (1979) Respiratory electron transport activities in phytoplankton and bacteria: comparison of methods. Limnol Oceanogr 24:576–583

    Google Scholar 

  21. Clark DS (1971) Studies in the surface plate method of counting bacteria. Can J Microbiol 17:943

    PubMed  Google Scholar 

  22. Cohen-Bazire G, Kunisawa R, Pfennig N (1969) Comparative study of the structure of gas vacuoles. J Bacteriol 100:1049–1061

    PubMed  Google Scholar 

  23. Colwell RR (1983) Biotechnology in the marine sciences. Science 222:18–24

    Google Scholar 

  24. Cooper DG, Zajic JE, Gerson DF (1979) Production of surface-active lipids byCorynebacterium lepus. Appl Env Microbiol 37:4–10

    Google Scholar 

  25. Cosio IG, Fisher RA, Carroad PA (1982) Bioconversion of shellfish chitin waste: waste pretreatment, enzyme production, process design, economic analysis. J Food Sci 47:901–905

    Google Scholar 

  26. Courington DP, Goodwin TW (1955) A Survey of the pigments of a number of chromogenic marine bacteria, with special regard to the carotenoids. J Bacteriol 70:568–571

    PubMed  Google Scholar 

  27. Cross WH, Chian ESK, Pohland FG, Harper S, Kharkar S, Cheng SS, Lu F (1982) Anaerobic treatment of coal gasifier effluent. Biotechnol Bioeng Symp 12:349–363

    Google Scholar 

  28. Cummins CS, Johnson JL (1981) The genusPropionibacterium In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin

    Google Scholar 

  29. Dalton H (1980) Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes. Adv Appl Microbiol 26:71–87

    Google Scholar 

  30. Deavin L, Jarman TR, Lawson CJ, Righelato RC, Slocombe S (1977) The production of alginic acid byAzotobacter vinelandii in batch and continuous culture. In: Sandford PA, Laskin A (eds) Extracellular microbial polysaccharides. American Chemical Society, Washington DC

    Google Scholar 

  31. De Blarc HJ, Delard FH, Wagner HN (1971) Automated radiometric detection of bacteria in 2,967 blood cultures. Appl Microbiol 22:846–849

    PubMed  Google Scholar 

  32. Demain AL (1981) Industrial microbiology. Science 241:987–995

    Google Scholar 

  33. Demain AL (1983) A new era of exploitation of microbial metabolites. Biochem Soc Symp 48:117–132

    PubMed  Google Scholar 

  34. DeYoung HG (1984) Taking the mystery out of enzymes. High Technol 4(4):51–55

    Google Scholar 

  35. Dickson KL, Maki AW, Cairns J Jr (eds) (1982) Modeling the fate of chemicals in the aquatic environment. Ann Arbor Science Publishers, Ann Arbor, Michigan

    Google Scholar 

  36. Doubet RS, Quatrano RS (1982) Isolation of marine bacteria capable of producing specific lyases for alginate degradation. Appl Environ Microbiol 44:754–756

    Google Scholar 

  37. Doubet RS, Quatrano RS (1984) Properties of alginate lyases from marine bacteria. Appl Environ Microbiol 47:699–703

    Google Scholar 

  38. Eguchi SY, Nichio N, Nagai S (1983) NADPH production from NADP+ by a formate-utilizing methanogenic bacterium. Agric Biol Chem 47:2941–2943

    Google Scholar 

  39. Feng PCS, Hartman PA (1982) Fluorogenic assays for immediate confirmation ofEscherichia coll. Appl Environ Microbiol 43:1320–1329

    PubMed  Google Scholar 

  40. Fiksdal L, Vik EA, Mills A, Staley JT (1982) Nonstandard methods for enumerating bacteria in drinking water. Jour AWWA 74:313–318

    Google Scholar 

  41. Food Chemical News (1984) 26(13):9–10

  42. Furukawa K (1982) Microbial degradation of polychlorinated biphenyls (PCBs). In: Chrabarty AM (ed) Biodegradation and detoxification of environmental pollutants. CRC Press Inc, Boca Raton

    Google Scholar 

  43. Geesey GG (1982) Microbial exopolymers: ecological and economic considerations. ASM News 48:9–14

    Google Scholar 

  44. Gnan S, Luedecke LO (1982) Impedance measurements in raw milk as an alternative to the standard plate count. J Food Prot 45:4–7

    Google Scholar 

  45. Goodwin TW (1975) Carotenoids in fungi and non-photosynthetic bacteria. Dev Ind Microbiol 11:29–88

    Google Scholar 

  46. Grampp EG (1982) Modification of certain foodstuffs by enzymes. Process Biochem 17(1): 2–12

    Google Scholar 

  47. Greenbaum E (1982) Photosynthetic hydrogen and oxygen production: kinetic studies. Science 215:291–293

    Google Scholar 

  48. Harper SR, Gross WH, Pohland FG, Chian ESK (1983) Adsorption-enhanced biogasification of coal conversion wastewater. Biotechnol Bioeng Symp 13:401–420

    Google Scholar 

  49. High Technology (1984) 4(1):8

  50. Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacteriumRhodospeudomonas capsulata: H2 production by growing cultures. J Bacteriol 129:724–732

    PubMed  Google Scholar 

  51. Hochhauser SJ (1983) Bringing biotechnology to market. High Technol 3(2):55–60

    Google Scholar 

  52. Holdeman LV, Good IJ, Moore WEC (1976) Human fecal flora: variation in bacterial composition within individuals. Appl Environ Microbiol 31:359–375

    PubMed  Google Scholar 

  53. Hou Cu-T, Patel RN, Laskin AI (1980) Epoxidation and ketone formation by C-1 — utilizing microbes. Adv Appl Microbiol 26:41–69

    Google Scholar 

  54. Itoh S, Suzuki T (1972) Effect of phamnolipids on growth ofPseudomonas aeruiginosa mutant deficient in n-paraffin-utilizing ability. Agr Biol Chem 36:2233–2235

    Google Scholar 

  55. Kang KS, Veeder GT, Cottrell IW (1983) Some novel bacterial polysaccharides of recent development. Prog Ind Microbiol 18:231–254

    Google Scholar 

  56. Karns JS, Kilbare JJ, Chatterjee DK, Chakrabarty AM (1984) Microbial degradation of 2, 4, 5-trichlorophenoxyacetic acid and chlorophenols. In: Omenn GS, Hollaender A (eds) Genetic control of environmental pollutants. Plenum Press, New York

    Google Scholar 

  57. Kelly CT, Fogarty WM (1983) Microbialα-glucosides. Process Biochem 18(3):6–12

    Google Scholar 

  58. Kieslich K (1980) Steroid conversions. In: Rose AH (ed) Economic microbiology, Vol 5. Microbial enzymes and bioconversions. Academic Press, London

    Google Scholar 

  59. Kilara A (1982) Enzymes and their uses in the processed apple industry: a review. Process Biochem 17(4):35–41

    Google Scholar 

  60. Klibinov AM, Puglisi AV (1980) The regeneration of coenzymes using immobilized enzymes

  61. Knackmuss H-J (1983) Xenobiotic degradation in industrial sewage: halopromatics as target substrates. Biochem Soc Symp 48:173–190

    PubMed  Google Scholar 

  62. Krampitz LO (1972) In: Nolloender A et al (eds) An inquiry into biological energy conversion. University of Tennessee, Knoxville

    Google Scholar 

  63. Kuznetsov SI, Dubinia GA, Lapteva NA (1979) Biology of oligotrophic bacteria. Ann Rev Microbiol 33:377–387

    Google Scholar 

  64. Lago BD, Kaplan L (1981) Vitamin fermentations: B2 and B12. In: Venija C, Singh K (eds) Advances in biotechnology, Vol 3. Fermentation products. Pergamon Press, Toronto

    Google Scholar 

  65. Lampi RA, Mikelson DA, Rowley DB, Previte JJ, Wells RE (1974) Radiometry and microcalorimetry-techniques for the rapid detection of foodborne microorganisms. Food Technol 28:52

    Google Scholar 

  66. Leisinger T, Cook AM, Hütter R, Nuesch J (eds) (1981) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London

    Google Scholar 

  67. Li AYL, DiGiano (1983) Availability of sorbed substrate for microbial degradation on granular activated carbon. J Water Poll Control Fed 55:392–399

    Google Scholar 

  68. Lin Chou W, Speece RE, Siddiqi RH (1978) Acclimation and degradation of petrochemical wastewater components by methane fermentation. Biotechnol Bioeng Symp 8:391–414

    Google Scholar 

  69. Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem 241:3845–3851

    PubMed  Google Scholar 

  70. Macy JM (1981) Nonpathogenic members of two genusBacteroides. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin

    Google Scholar 

  71. Maki AW, Dickson KL, Cairns J Jr (eds) (1980) Biotransformation and fate of chemicals in the aquatic environment. American Society for Microbiology, Washington DC

    Google Scholar 

  72. Makula RA, Finnerty WR (1972) Microbial assimilation of hydrocarbons: cellular distribution of fatty acids. J Bacteriol 12:398–407

    Google Scholar 

  73. Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press Cambridge, Massachusetts

    Google Scholar 

  74. Marshall KC (1980) Microbes at interfaces. In: Ellwood DC, Hedger JN, Latham MJ, Lynch JM, Slater JH (eds) Contemporary microbial ecology. Academic Press, London, pp 93–106

    Google Scholar 

  75. Meadows PS, Anderson JG (1979) The microbiology of interfaces in the marine environment. Prog Microbiol 15:207–266

    Google Scholar 

  76. Miceika BG, Malloy PS, Ducate MJ (1983) Automated methods in microbiology. I. Bacterial detection systems. Am J Med Technol 49:305–310

    PubMed  Google Scholar 

  77. Michaels AS (1984) The impact of genetic engineering. Chem Eng Process 80(4):9–15

    Google Scholar 

  78. Moore WEL, Holdeman LV (1974) Human fecal flora. The normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–969

    PubMed  Google Scholar 

  79. Munnecke DM, Johnson LM, Tabot HW, Barik S (1982) Microbial metabolism and enzymology of selected pesticides. In: Chakrabarty AM (ed) Biodegradation and detoxification of environmental pollutants. CRC Press Inc, Boca Raton, pp 1–32

    Google Scholar 

  80. Newton J (1982) Photoproduction of molecular hydrogen by a plant-algal symbiotic system. Science 191:559–561

    Google Scholar 

  81. Norris JR, Berkeley RCW, Logan N, O'Donnell AG (1981) The genusBacillus andSporolactobacillus. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin

    Google Scholar 

  82. Oyaizu H, Komagata K, Amemura A, Harada T (1982) A succinoglycan decomposing bacteriumCytophaga arvensicola new species. J Gen Appl Microbiol 28:369–388

    Google Scholar 

  83. Patel RN, Hou CT (1983) Enzymatic transformation of hydrocarbons by methanotrophic organisms. Dev Ind Microbiol 24:141–163

    Google Scholar 

  84. Patel RN, Hou CT, Laskin AI (1982) Oxidation of gaseous hydrocarbons and related compounds by methanotrophic organisms. Dev Ind Microbiol 23:187–205

    Google Scholar 

  85. Pedros-Alio C, Brock TD (1983) The importance of attachment to particles for planktonic bacteria. Arch Hydrobiol 98:354–379

    Google Scholar 

  86. Poindexter JS (1981) Oligotrophy. In: Alexander M (ed) Advances in microbial ecology. Plenum Press, New York, vol 5, pp 63–89

    Google Scholar 

  87. Prakasam TBS (1983) Denitrification. J Water Pollut Control Fed 55:632–637

    Google Scholar 

  88. Provasoli L, Carlucci AF (1974) Vitamins and growth regulators. In: Stewart WDP (ed) Algal physiology and biochemistry. University of California Press, Berkeley, pp 741–787

    Google Scholar 

  89. Raj H (1977)Leucothrix CRC critical reviews in microbiology. 5:271–304

    Google Scholar 

  90. Razumov AS (1932) Priamoi metod ucheta bacterii v. vode Mikrobiologija 1:131–146

    Google Scholar 

  91. Reasoner DJ, Geldreich EE (1979) A new medium for the enumeration and subculture of bacteria from potable water. Proc Am Soc Microbiol Annual Conference, Los Angeles

  92. Reddy PG, Singh HD, Pathals MG, Bhagat SD, Baruah JW (1983) Isolation and functional characterization of hydrocarbon emulsifying and solubilizing factors produced by aPseudomonas species. Biotechnol Bioeng 25:387–404

    Google Scholar 

  93. Reisfield A, Rosenberg E, Gutnick D (1972) Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol 24:363–368

    PubMed  Google Scholar 

  94. Rose AH (ed) (1978a) Economic microbiology, Vol 2. Primary products of metabolism. Academic Press, London

    Google Scholar 

  95. Rose AH (ed) (1978b) Economic microbiology, Vol 3. Secondary products of metabolism. Academic Press, London

    Google Scholar 

  96. Roy PK, Singh HD, Bhagat SD, Baruah JN (1979) Characterization of hydrocarbon emulsification and solubilization occurring during the growth ofEndocycopsis lipolytica on hydrocarbons. Biotechnol Bioeng 22:955–974

    Google Scholar 

  97. Sandford P, Laskin A (eds) (1977) Extracellular microbial polysaccharides. Am Chem Soc, Washington DC. Symposium Series, no. 45

    Google Scholar 

  98. Sandford PA, Pittsley JE, Knutson CA, Cadmus MC, Watson PR, Jeanes A (1976) Variation inXanthomonas campestris NRRLB-1459 characterization of xanthan samples of differing pyruvic acid content (abstract) 172nd Natl Meet Am Chem Soc CARB53

  99. Sawa Y, Kanayama K, Ochiai H (1982) Photosynthetic generation of ATP using a strain of thermophilic blue-green algae. Biotech Bioeng 24:305–315

    Google Scholar 

  100. Schultz JR, Keinath TM (1984) Powered activated carbon treatment process mechanisms. J Water Pollut Cont Fed 56:143–151

    Google Scholar 

  101. Schultz JS, Gerhardt P (1969) Dialysis culture of microorganisms: design, theory and results. Bacteriol Rev 33:1–47

    PubMed  Google Scholar 

  102. Sebek OK (1980) Microbial transformations of antibiotics. In: Rose AH (ed) Economic microbiology, Vol 5. Microbial enzymes and bioconversions. Academic Press, London

    Google Scholar 

  103. Segers L, Verstraete W (1983) Conversion or organic acids to H2 byRhodospirillaceae grown with glutamate or dinitrogen or nitrogen source. Biotech Bioeng 25:2843–2853

    Google Scholar 

  104. Shinnar R (1975) Thermochemical hydrogen generation: heat requirements and costs. Science 188:1036–1037

    Google Scholar 

  105. Shiveley JM (1974) Inclusion bodies of procaryotes. Ann Rev Microbiol 28:167

    Google Scholar 

  106. Simon RD (1971) Cyanophycin granules from the blue green algaAnabaena cylindrica. Proc Natl Acad Sci US 68:265

    Google Scholar 

  107. Slodki ME, Cadmus MC (1978) Production of microbial polysaccharides. Adv Appl Microbiol 23:19–54

    PubMed  Google Scholar 

  108. Smirnoff WA (1971) Effect of chitinase on the action ofBacillus thuringiensis. Can Entomol 103:1829–1831

    Google Scholar 

  109. Smirnoff WA (1977) Confirmations experimentales du potential du complexeBacillus thuringiensis et chitinase pour la repression de la tordeuse des bourgeons de l'epinette,Choristoneura fumiferana (Lepidoptera: Tortricidae). Can Ent 109:351–358

    Google Scholar 

  110. Smirnoff WA, Desaulniers R, Juneau A, Valero JR, Pelietier M (1976) Resultats de la dispersion aerienne dine formulation concentrée deBacillus thuringiensis avec addition de chitinase contre la tordeuse des bourgeons de l'épinette en 1974. Ann Soc Entomol Que 21:26–34

    Google Scholar 

  111. Smirnoff WA, Juneau A, Valero JR (1982) Essai dine préparation ultra-concentrée deBacillus thuringiensis contre la tordeuse des bourgeons de l'épinette. Can J For Res 12:105–107

    Google Scholar 

  112. Smirnoff WA, Larson LV, Juneau A, Valero JR (1974) Test with a highly concentrated lowvolume formulation ofBacillus thuringiensis against spruce budworm. Bi-Mon Res Notes Can For Serv 30:1–9

    Google Scholar 

  113. Smirnoff WA, Valero J (1977) Determination of the chitinolytic activity of nine subspecies ofBacillus thuringiensis. J Invest Pathol 30:265–266

    Google Scholar 

  114. Staley JT (1980) The gas vacuole: an early organelle of prokaryote motility? Origins of Life 10:111–116

    Google Scholar 

  115. Staley JT, Konopka AE (1984)Microcyclus In: Krieg NR (ed) Bergey's manual of systematic bacteriology. Williams and Wilkens, Baltimore, pp 133–135

    Google Scholar 

  116. Starace CA (1983) Detergent enzymes-past, present, and future. J Am Oil Chem Soc 60: 1025–1027

    Google Scholar 

  117. Stolp H, Starr MP (1981) Principles of isolation, cultivation, and conservation of bacteria. In: Starr MP, Stolph H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin

    Google Scholar 

  118. Strand S, Dykes J, Chiang V (1984) Aerobic microbial degradation of glucoisosaccharinic acid. Appl Envir Microbiol 47:268–271

    Google Scholar 

  119. Sutherland IW (1984) Enzymes in the assay of microbial polysaccharides. Process Biochem 18(1):19–24

    Google Scholar 

  120. Sutherland IW, Ellwood DC (1979) Microbial exopolysaccharides-industrial polymers of current and future potential. Symp Soc Gen Bacteriol 29:107–150

    Google Scholar 

  121. Suzuki T, Ogawa K (1972) Transient accumulation of fatty alcohols by n-paraffin-grown microorganism. Agr Biol Chem 36:457–463

    Google Scholar 

  122. Switzenbaum MS, Pause SM (1983) Biological filters. J Water Pollut Control Fed 55:612–615

    Google Scholar 

  123. Taylor RH, Geldreich EE (1979) A new membrane filter procedure for bacterial counts in potable water and swimming pool samples. Jour AWWA 71:402

    Google Scholar 

  124. Taylor MJ, Richardson T (1979) Applications of microbial enzymes in food systems and biotechnology. Adv Appl Microbiol 25:7–35

    PubMed  Google Scholar 

  125. Tempest DW, Neigssel OM, DeMattos JJT (1984) Relevance of low-nutrient environments to fermentation design and control in current perspectives in microbial ecology. In: Klug MJ, Reddy CA (eds) American society for microbiology. Washington DC, pp 643–650

    Google Scholar 

  126. Trüper HG, Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin

    Google Scholar 

  127. Vandamme EJ (1980) Penicillin acylases and beta-lactamases. In: Rose AH (ed) Economic microbiology, Vol 5. Microbial enzymes and bioconversions. Academic Press, London

    Google Scholar 

  128. Vining LC (1980) Conversions of alkaloids and nitrogeous xenobiotics. In: Rose AH (ed) Economic microbiology, Vol 5. Microbial enzymes and bioconversions. Academic Press, London

    Google Scholar 

  129. Voets JP, Pipyn P, Van Lancker P, Verstraete W (1976) Degradation of microbicides under different environmental conditions. J Appl Bacteriol 40:67–72

    PubMed  Google Scholar 

  130. Waes GM, Bossuyt RG (1982) Usefulness of the bengal kor-crystal violet-ATP method for predicting the keeping quality of pasteurized milk. J Food Prot 45:928–931

    Google Scholar 

  131. Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36:1–32

    PubMed  Google Scholar 

  132. Walsby AE (1978) The gas vesicles of aquatic prokaryotes. Symp Soc Gen Microbiol 28: 327–357

    Google Scholar 

  133. Wang DIC, Cooney CL, Demain AL, Dunnill P, Humphrey AE, Lilly MD (1979) Fermentation and enzyme technology. John Wiley & Sons, New York

    Google Scholar 

  134. Wayman CH (1971) Biodegradation of synthetic detergents. Prog Ind Microbiol 10:219–271

    PubMed  Google Scholar 

  135. Weetall HH, Zelko JT (1983) Application of microbial enzymes for production of foodrelated products. Dev Ind Microbiol 24:71–77

    Google Scholar 

  136. Wilson J (1981) Removal of organics from water by granular activated carbon and microorganisms. Process Biochem 16(4):9–12

    Google Scholar 

  137. Wong C-H, Daniels L, Orme-Johnson WH, Whitesides GM (1981) Enzyme catalyzed organic synthesis: NAD(P)H regeneration using dihydrogen and the hydrogenase fromMethanobacterium thermoautotrophicum. J Am Chem Soc 103:6227–6228

    Google Scholar 

  138. Wu YC, Smith ED (1982) Fixed-Film Biolog Processes for Wastewater Treatment. Noyes Data Corp., Park Ridge, Illinois

    Google Scholar 

  139. Zajic JE, Guignard H, Gerson DF (1977) Emulsifying and surface active agents fromCorynebacterium hydrocarboclastus. Biotechnol Bioeng 19:1285–1301

    PubMed  Google Scholar 

  140. Zinder SH (1984) Microbiology of anaerobic conversion of organic wastes to methane: recent developments. Am Soc Microbiol News 50:294–298

    Google Scholar 

  141. Zosim Z, Gutnick D, Rosenberg E (1983) Uranium binding by emulsan and emulsanols. Biotechnol Bioeng 25:1725–1735

    Google Scholar 

  142. Zosim Z, Gutnick D, Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized byAcinetobacter RAG-1 emulsan. Biotechnol Bioeng 24:281–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staley, J.T., Stanley, P.M. Potential commercial applications in aquatic microbiology. Microb Ecol 12, 79–100 (1986). https://doi.org/10.1007/BF02153224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02153224

Keywords

Navigation