Skip to main content
Log in

Biotechnology and ecological studies on the oral cavity

  • Published:
Microbial Ecology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Balch, WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  Google Scholar 

  2. Baldwin RL, Allison MJ (1983) Rumen metabolism. J Anim Sci 57 (Suppl) 2:461–477

    PubMed  Google Scholar 

  3. Bowden GHW, Ellwood DC, Hamilton IR (1979) Microbial ecology of the oral cavity. Adv Microb Ecol 3:135–217

    Google Scholar 

  4. Bowden GH, Hardie JM, McKee AS, Marsh PD, Fillery ED, Slack GL (1976) The microflora associated with developing carious lesions of the distal surfaces on the upper first premolars in 13–14 year-old children. In: Stiles HM, Loesche WL, O'Brien TC (eds) Microbial aspects of dental caries. Information Retrieval Inc, Washington, DC, pp 223–241

    Google Scholar 

  5. Bowden GH, Hardie JM, Slack GL (1975) Microbial variations in approximal dental plaque. Caries Res 9:253–277

    PubMed  Google Scholar 

  6. Bowen WH (1976) Nature of plaque. Oral Sci Rev 9:3–21

    PubMed  Google Scholar 

  7. Carlson J, Griffith CJ (1974) Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol 19:1105–1109

    PubMed  Google Scholar 

  8. Cole MF, Bowden GH, Korts DC, Bowen WH (1978) The effect of pyridoxine, phytate and invert sugar on production of plaque acids in situ in the monkey (M. fasicularis). Caries Res

  9. Coulter WA, Russell C (1976) pH and Eh in single and mixed culture bacterial plaque in an artificial mouth. J Appl Bacteriol 40:73–87

    PubMed  Google Scholar 

  10. Curtis MA, Kemp CW (1984) Nitrogen metabolism in dental plaque. In: Guggenheim B (ed) Cariology today. Karger, Basel, pp 212–222

    Google Scholar 

  11. Distler W, Kroncke A (1983) The acid pattern in human dental plaque. J Dent Res 62:87–91

    PubMed  Google Scholar 

  12. Donoghue HD, Hudson DE, Perrons CJ, Dibdin GH, Rapson G, Shellis RP, Wilson CM (1983) Effect of inoculation sequence and nutrients uponStreptococcus mutans BHT andStreptococcus mitior LPA-1 growing on human teeth in an artificial mouth. J Appl Bacteriol 54:23–29

    PubMed  Google Scholar 

  13. Edgar WM (1982) Duration of response and stimulus sequence in the interpretation of plaque pH data. J Dent Res 61:1126–1129

    PubMed  Google Scholar 

  14. Edgar WM, Tatevossian A (1971) The aqueous phase of plaque. In: Fernhead RW, Stack MV (eds) Tooth enamel II. Wright and Sons, Bristol, pp 229–232

    Google Scholar 

  15. Ellwood DC (1976) Chemostat studies of oral bacteria. In: Stiles HM, Loesche WJ, O'Brien TC (eds) Microbial aspects of dental caries. Information Retrieval Inc, Washington, DC, pp 785–798

    Google Scholar 

  16. Ellwood DC, Hunter JR (1976) The mouth as a chemostat. In: Dean ACR, Ellwood DC, Evans CGT, Melling J (eds) Continuous culture 6: applications and new fields. Ellis Horwood Ltd, Chichester, pp. 270–282

    Google Scholar 

  17. Ellwood DC, Hunter JR, Longyear VMC (1974) Growth ofStreptococcus mutans in a chemostat. Arch Oral Biol 19:659–664

    PubMed  Google Scholar 

  18. Featherstone JDB, Duncan JF, Cutress TW (1979) A mechanism for dental caries based on chemical processes and diffusion phenomena during in vitro caries simulation on tooth enamel. Arch Oral Biol 24:101–112

    PubMed  Google Scholar 

  19. Featherstone JDB, Rodgers BE (1981) Effect of acetic, lactic and other organic acids on the formation of artificial carious lesions. Caries Res 15:377–385

    PubMed  Google Scholar 

  20. Firestone AR (1982) Human interdental plaque-pH data and rat caries tests: results with the same substances. J Dent Res 61:1130–1136

    PubMed  Google Scholar 

  21. Geddes DAM (1972) The production of L(+) and D(−) lactic acid and volatile acids by human dental plaque and the effects of plaque buffering and acid strength on pH. Arch Oral Biol 17:537–545

    PubMed  Google Scholar 

  22. Geddes DAM (1975) Acids produced by human dental plaque metabolism in situ. Caries Res 9:98–109

    PubMed  Google Scholar 

  23. Ghosh S (1982) Kinetics of acid-phase fermentation in anaerobic digestion. In: Scott CD (ed) Fourth symposium on biotechnology in energy production and conservation. John Wiley and Sons, New York, pp 239–248

    Google Scholar 

  24. Gibbons RJ, van Houte J (1975) Dental caries. Ann Rev Med 26:121–136

    PubMed  Google Scholar 

  25. Gilmour MN, Green GC, Zahn LM, Sparmann CD, Pearlman J (1976) The C1-C4 monocarboxylic and lactic acids in dental plaque before and after exposure to sucrose in vivo. In: Stiles HM, Loesche WJ, O'Brien TE (eds) Microbial aspects of dental caries. Information Retrieval Inc, Washington, DC, pp 539–556

    Google Scholar 

  26. Gilmour MN, Poole AE (1967) The fermentative capabilities of dental plaque. Caries Res 1:247–260

    Google Scholar 

  27. Goldberg I, Cooney CL (1981) Formation of short-chain fatty acids from H2 and CO2 by a mixed culture of bacteria. Appi Environ Microbiol 41:148–154

    Google Scholar 

  28. Hardie JM, Bowden GH (1974) The normal microbial flora of the mouth. In: Sykes G, Skinner FA (eds) The normal microbial flora of man. Academic Press, London, pp 47–83

    Google Scholar 

  29. Hoshino E, Karino H, Yamada T (1981) Lactate metabolism by human dental plaque andVeillonella under aerobic and anaerobic conditions. Arch Oral Biol 26:17–22

    PubMed  Google Scholar 

  30. Hungate RE (1966) The rumen and its microbes. Academic Press, New York

    Google Scholar 

  31. Jannasch HW, Mateles RI (1974) Experimental bacterial ecology studied in continuous culture. Adv Microbiol Physiol 11:165–212

    Google Scholar 

  32. Jenkins GN (1966) The influence of environmental fluids on enamel solubility. J Dent Res 45:662–669

    Google Scholar 

  33. Keevil WC, Marsh PD, Ellwood DC (1984) Regulation of glucose metabolism in oral streptococci through independent pathways of glucose-6-phosphate and glucose-1-phosphate formation. J Bacteriol 157:560–567

    PubMed  Google Scholar 

  34. Keevil CW, West AA, Marsh PD, Ellwood DC (1983) Batch versus continuous culture studies of glucosyltransferase synthesis in oral streptococci. Proceedings glycosyltransferases, glucans, sucrose and dental caries. In: Doyle RJ, Ciardi JE (eds) Sp Supp Chemical Senses, Information Retrieval, Washington, DC, pp 189–200

  35. Kemp CW, Curtis MA, Robrish SA, Bowen WH (1983) Biogenesis of methane in primate dental plaque. FEBS Letters 155:61–64

    PubMed  Google Scholar 

  36. Kemp CW, Robrish SA, Curtis MA, Sharer SA, and Bowen WH (1983) Application of a competition model to the growth ofStreptococcus mutans andStreptococcus sanguis in binary continous culture. Appl Environ Microbiol 45:1277–1282

    PubMed  Google Scholar 

  37. Kenney EB, Ash MM (1969) Oxidation reduction potential of developing plaque, periodontal pockets and gingival sulci. J Periodont 40:630–633

    PubMed  Google Scholar 

  38. Klass DL (1984) Methane from anaerobic fermentation. Science 223:1021–1028

    Google Scholar 

  39. Levy PF, Sanderson JE, Wise DL (1982) Development of a process for production of liquid fuels from biomass. In: Scott CD (ed) Fourth symposium on biotechnology in energy production and conservation. John Wiley & Sons, New York, pp 239–248

    Google Scholar 

  40. Loesch WJ, Gusberti F, Mettraux G, Higgins T, Syed S (1983) Relationship between oxygen tension and subgingival bacterial flora in untreated periodontal pockets. Infect Immun 42:659–667

    PubMed  Google Scholar 

  41. Loesch WJ, Syed SA (1973) The predominant cultivable fora of carious plaque and carious dentine. Caries Res 7:201–216

    PubMed  Google Scholar 

  42. Mah RA, Ward DM, Baresi L, Glass TL (1977) Biogenesis of methane. Ann Rev Microbiol 31:309–341

    Google Scholar 

  43. Mah RA (1982) Methanogenesis and methanogenic partnerships. Phil Trans R Soc Lond B

  44. Manganiello AD, Socransky SS, Smith C, Propas D, Oran V, Dogon IL (1977) Attempts to increase viable count recovery of human supragingival dental plaque. J Periodont Res 12:107–119

    PubMed  Google Scholar 

  45. Marsh PD, Hunter JR, Bowden GH, Hamilton IR, McKee AS, Hardie JM, Ellwod DC (1983) The influence of growth rate and nutrient limitation on the microbial compositions and biochemical properties of mixed culture of oral bacteria grown in a chemostat. J Gen Microbiol 129:755–770

    PubMed  Google Scholar 

  46. Mikx FHM, van der Hoeven JS, Plasschaert AJM, Konig KG (1975) Effect ofActinomyces viscosus on the establishment and symbiosis ofStreptococcus mutans andStreptococcus sanguis in SPF rats on different sucrose diets. Caries Res 9:1–20

    PubMed  Google Scholar 

  47. Mikx FHM, van der Hoeven JS, Konig K, Plasschaert AJM, Guggenheim B (1972) Establishment of defined ecosystem in germ-free rats. Caries Res 6:211–223

    PubMed  Google Scholar 

  48. Mikx FHM, van der Hoeven JS (1975) Symbiosis ofStreptococcus mutans andVeillonella alescens in mixed continuous culture. Arch Oral Biol 20:407–410

    PubMed  Google Scholar 

  49. Moore WEC, Holderman LV, Smibert RM, Good IJ, Burmeister JA, Palcanis KG, Ranney RR (1982) Bacteriology of experimental gingivitis in young adult humans. Infect Immun 38:651–667

    PubMed  Google Scholar 

  50. Moore WEC, Holderman LV, Smibert RM, Hash DE, Burmeister JA, Ranney RR (1982) Bacteriology of severe periodontitis in young adult humans. Infect Immun 38:1137–1148

    PubMed  Google Scholar 

  51. Morris JG (1975) The Physiology of obligate anaerobiosis. Adv Microb Physiol 12:169–246

    Google Scholar 

  52. Morris JG (1979) Oxygen and growth of the oral bacteria. In: Kleinberg I, Ellison SA, Mandel ID (eds) Saliva and dental caries. Information Retrieval, Washington, DC, pp 293–306

  53. Muntz JA (1943) Production of acids from glucose by dental plaque material. J Biol Chem 148:225–236

    Google Scholar 

  54. Newman HN, Poole DFG (1974) Structure and ecological aspects of dental plaque. In: Skinner FA, Carr JG (eds) The normal microbial flora of man. Academic Press, London, pp 111–134

    Google Scholar 

  55. Newman MG, Socransky SS (1977) Predominate cultivable microbiota in periodontosis J Periodont Res 12:120–128

    PubMed  Google Scholar 

  56. Parker RB (1966) Continuous culture system for ecological studies of microorganisms Biotech and Bioengin 8:473–488

    Google Scholar 

  57. Parker RB, Snyder ML (1961) Interactions of the oral microbiota. I. A system for the defined study of mixed cultures. Proc Soc Exp Biol Med 108:749–752

    PubMed  Google Scholar 

  58. Pirt SJ (1975) Principles of microbe and cell cultivation. John Wiley and Sons, New York

    Google Scholar 

  59. Ritz HL (1967) Microbial population shifts in developing human dental plaque. Arch Oral Biol 12:1561–1568

    PubMed  Google Scholar 

  60. Robrish SA, Curtis MA, Sharer SA, Bowen WH (1984) The analysis of picomole amounts of L(+) and D(−) lactic acid in samples of dental plaque using bacterial luciferase. Anal Biochem 136:503–508

    PubMed  Google Scholar 

  61. Russell C, Coulter WA (1975) Continuous monitoring of pH and Eh in bacterial plaque grown on a tooth in an artificial mouth. Appl Microbiol 29:141–144

    PubMed  Google Scholar 

  62. Schachtele CF, Jensen ME (1982) Comparison of methods for monitoring changes in the pH of human dental plaque. J Dent Res 61:1117–1125

    PubMed  Google Scholar 

  63. Scherp HW (1971) Dental caries: prospects for prevention. Science 173:1199–1205

    PubMed  Google Scholar 

  64. Silverstone LM, Johnson NW, Hardie JM, Williams RAD (1981) Dental caries: etiology, pathology and prevention. The Macmillan Press LTD, London

    Google Scholar 

  65. Socransky SS, Manganiello AB (1971) The oral microbiota of man from birth to senility. J Periodont 42:485–495

    PubMed  Google Scholar 

  66. Socransky SS, Manganiello AB, Propas D, Oram V, van Houte J (1977) Bacteriological studies of developing supragingival dental plaque. J Periodont Res 12:90–106

    PubMed  Google Scholar 

  67. Stephan RM (1944) Intra-oral hydrogen ion concentrations associated with dental caries activity. J Dent Res 23:257–266

    Google Scholar 

  68. van der Hoeven JS (1976) Carbohydrate metabolism ofStreptococcus mutans in dental plaque in gnotobiotic rats. Arch Oral Biol 21:431–433

    PubMed  Google Scholar 

  69. van der Hoeven JS, Franken HCM (1982) Production of acids in rat dental plaque with or withoutStreptococcus mutans. Caries Res 16:375–383

    PubMed  Google Scholar 

  70. van Palenstein Helderman WH, Rosman I (1976) Hydrogen-dependent organism from the human gingival crevice resemblingVibrio succinogenes. Antonie van Leeuwenhoek 42:107–118

    PubMed  Google Scholar 

  71. Veldkamp H (1977) Ecological studies with the chemostat. Adv Microb Ecol 1:59–89

    Google Scholar 

  72. Veldkamp H, Jannasch H (1972) Mixed culture studies in the chemostat. J Appl Chem Biotechnol 22:105–123

    Google Scholar 

  73. Vratsanos SM and Mandel ID (1982) Comparative plaque acidogenesis of caries-resistant vs. caries-susceptible adults. J Dent Res 61:465–468

    PubMed  Google Scholar 

  74. Wolfe RS (1979) Methanogens: a suprising microbial group. Antonie van Leeuwenhoek 45:353–364

    PubMed  Google Scholar 

  75. Wolin MJ (1979) Rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv Microb Ecol 3:49–77

    Google Scholar 

  76. Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic Press, London, pp 323–356

    Google Scholar 

  77. Zajic JE, Kosaric N, Brosseau JD (1978) Microbial production of hydrogen. Adv Biochem Engineering 9:57–109

    Google Scholar 

  78. Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    PubMed  Google Scholar 

  79. Zeikus JG (1980) Chemical and fuel production by anerobic bacteria. Ann Rev Microbiol 34:423–464

    Google Scholar 

  80. Zeikus JG (1983) Microbial communication between biodegradative populations in nature. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in their natural environments. Cambridge University Press, London, pp 423–462

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robrish, S.A. Biotechnology and ecological studies on the oral cavity. Microb Ecol 12, 53–64 (1986). https://doi.org/10.1007/BF02153222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02153222

Keywords

Navigation