Advertisement

Medical Microbiology and Immunology

, Volume 165, Issue 4, pp 271–288 | Cite as

Immunochemical properties of oligosaccharide-protein conjugates withKlebsiella-K2 specificity

I. Specificity and crossreactivity of anti-conjugate versus anti-bacterial antibodies
  • Hildegard Geyer
  • Stephan Stirm
  • Karl Himmelspach
Article

Abstract

A series of repeating unit oligomers
$$\begin{gathered} \alpha - GlcUA \hfill \\ 1 \downarrow 3 \hfill \\ [ \to 4) - \beta - Man - (1 \to 4) - \alpha - Glc - (1 \to 3) - \beta - Glc - (1 \to ]_n , 1 \leqslant n \leqslant 7 , \hfill \\ \end{gathered} $$
was prepared by depolymerization ofKlebsiella pneumoniae B5055 (01∶K2) capsular polysaccharide (K2-PS) as catalyzed by a bacteriophage-associated glycanase. The monomeric repeating unit [tetrasaccharide, (TS)] and its di- and trimer [octa- and dodecasaccharide (OS and DS)] were conjugated to edestin via reductive aminophenylation and azo coupling at the reducing sugar end group. Rabbit anti-conjugate and anti-bacterial antibodies raised in rabbits were compared with respect to specificity and crossreactivity towards the oligomers of the various molecular sizes, towards parent PS, and towards whole bacteria. Antibodies able to bind specifically to the PS and the bacteria were elicited by all three conjugates. However, the anti-TS conjugate antibodies, in contrast to those obtained with OS and DS conjugate, proved to be practically unable to effect bacterial agglutination. Correspondingly, the TS played an exceptional role in binding to anti-bacterial antibodies. In contrast to the OS and DS it could not fully inhibit precipitation of these antibodies with the bacterial PS. Moreover, the inhibition of the binding of the PS to antibacterial antibodies produced by TS was about 50-fold weaker than that produced by OS, DS, and higher members of the series, all of which were about equally potent inhibitors (on a molar basis). The results show that two repeating units are the minimum requirement for a substantial representation of the PS's serologic specificity. The exceptional behavior of the TS correlates with its lack of theβ-Glc-(1–4)-Man linkage present in all higher members of the series.

Keywords

Oligomer Capsular Polysaccharide Molar Basis Tetrasaccharide Conjugate Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

PBS

phosphate-buffered saline

PFU

plaque-forming units

PS

polysaccharide

K2-PS

Klebsiella pneumoniae B5055 (01∶K2) capsular polysaccharide

TS

tetrasaccharide (=monomeric repeating unit)

OS

octasaccharide (=dimeric repeating unit)

DS

dodecasaccharide (=trimeric repeating unit)

NaBH3CN

sodium cyanoborohydride

HHG

human γ-globulin

FCA

Freund's complete adjuvant

i.m.

intramuscularly

i.p.

intraperitoneally

TS125I, PS125I

iodine-125-labelled TS or K2-PS, respectively

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arakatsu, Y., Ashwell, G., Kabat, E.A.: Immunochemical studies on dextrans. V. Specificity and crossreactivity with dextrans of the antibodies formed in rabbits to isomaltonic and isomaltotrionic acids coupled to bovine serum albumin. J. Immunol.97, 858–866 (1966)PubMedGoogle Scholar
  2. 2.
    Avery, O.T., Goebel, W.F.: Chemo-immunological studies on conjugated carbohydrate-proteins. II. Immunological specificity of synthetic sugar-protein antigens. J. Exp. Med.50, 533–550 (1929)CrossRefGoogle Scholar
  3. 3.
    Avrameas, S., Ternyck, T.: The cross-linking of protein with glutaraldehyde and its use for the preparation of immunoadsorbents. Immunochemistry6, 53–66 (1969)CrossRefPubMedGoogle Scholar
  4. 4.
    Axen, R., Porath, J., Ernback, S.: Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature214, 1302–1305 (1967)PubMedGoogle Scholar
  5. 5.
    Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem.4, 330–334 (1962)CrossRefPubMedGoogle Scholar
  6. 6.
    Bjömdal, H., Hellerqvist, C.G., Lindberg, B., Svensson, S.: Gas-Flüssigkeits-Chromatographie und Massenspektrometrie bei der Methylierungsanalyse von Polysacchariden. Angew. Chemie82, 643–674 (1970)Google Scholar
  7. 7.
    Cheng, F.W., Cannon, L.E., Margolies, M.N., Strosberg, A.D., Haber, E.: Purification, specificity, and hypervariable region sequence of anti-pneumococcal polysaccharide antibodies elicited in a single rabbit. J. Immunol.117, 807–813 (1976)PubMedGoogle Scholar
  8. 8.
    Coligan, J.E., Fraser, B.A., Kindt, T.J.: A disaccharide hapten from streptococcal group C carbohydrate that crossreacts with the Forssman glycolipid. J. Immunol.118, 6–11 (1977)PubMedGoogle Scholar
  9. 9.
    Crothers, D.M., Metzger, H.: The influence of polyvalency on the binding properties of antibodies. Immunochemistry9, 341–357 (1972)CrossRefPubMedGoogle Scholar
  10. 10.
    Cuatrecasas, P., Anfisen, C.B.: Affinity chromatography. Ann. Rev. Biochem.40, 259–277 (1971)CrossRefPubMedGoogle Scholar
  11. 11.
    Edwards, P.R., Ewing, W.H. (eds.): Identification ofEnterobacteriaceae: Minneapolis: Burgess 1966Google Scholar
  12. 12.
    Gahan, L.C., Sandford, P.A., Conrad, H.E.: The structure of the serotype 2 capsular polysaccharide ofAerobacter aerogenes. Biochemistry6, 2755–2767 (1967)CrossRefPubMedGoogle Scholar
  13. 13.
    Galanos, C., Lüderitz, O., Himmelspach, K.: The partial acid hydrolysis of polysaccharides: A new method for obtaining oligosaccharides in high yield. Eur. J. Biochem.8, 332–336 (1969)CrossRefPubMedGoogle Scholar
  14. 14.
    Geyer, H., Schlecht, S., Himmelspach, K.: In preparationGoogle Scholar
  15. 15.
    Goebel, W.F., Avery, O.T.: Chemo-immunological studies on conjugated carbohydrate-proteins. I. The synthesis of p-aminophenolβ-glucoside, p-aminophenolβ-galactoside and their coupling with serum globulin. J. Exp. Med.50, 521–531 (1929)CrossRefGoogle Scholar
  16. 16.
    Goebel, W.F.: Chemo-immunological studies on conjugated carbohydrate-proteins. XII. The immunological properties of an artificial antigen containing cellobiuronic acid. J. Exp. Med.68, 469–484 (1938)CrossRefGoogle Scholar
  17. 17.
    Goebel, W.F.: Antibacterial immunity induced by artificial antigens. I. Immunity of experimental pneumococcal infection with an antigen containing cellobiuronic acid. J. Exp. Med.69, 353–364 (1939)CrossRefGoogle Scholar
  18. 18.
    Hämmerling, U.: Immunchemische Untersuchungen zur Überführung von bakteriellen Polysaccharid-Haptenen in Vollantigene. Dissertation Universität Freiburg (1965)Google Scholar
  19. 19.
    Hakomori, S.: A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem.55, 205–207 (1964)PubMedGoogle Scholar
  20. 20.
    Hellerqvist, C.G., Lindberg, B., Svensson, S., Holme, T., Lindberg, A.A.: Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide fromSalmonella typhimurium 395MS. Carbohydr. Res.8, 43–55 (1968)CrossRefGoogle Scholar
  21. 21.
    Himmelspach, K., Westphal, O., Teichmann, B.: Use of 1-(m-aminophenyl) flavazoles for the preparation of immunogens with oligosaccharide determinant groups. Eur. J. Immunol.1, 106–112 (1971)PubMedGoogle Scholar
  22. 22.
    Himmelspach, K., Geyer, H., Hoyer, G., Schepers, G.: Preparation of125I-labelled oligosaccharide derivatives with the aid of 3-(4-hydroxyphenyl)propionic acid N-hydroxy-succinimide ester. FEBS Letters75, 154–158 (1977)CrossRefPubMedGoogle Scholar
  23. 23.
    Hornick, C.L., Karush, F.: Antibody affinity-III. The role of multivalence. Immunochemistry9, 325–340 (1972)CrossRefPubMedGoogle Scholar
  24. 24.
    Howard, J.G., Vicary, G., Courtenay, B.M.: Influence of molecular structure on the tolerogenicity of bacterial dextrans. I. Theα 1-6-linked epitope of dextran B5 12. Immunology29, 585–597 (1975)PubMedGoogle Scholar
  25. 25.
    Hunter, W.M., Greenwood, F.C.: Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature194, 495–496 (1962)PubMedGoogle Scholar
  26. 26.
    Imoto, T., Yagishita, K.: A simple activity measurement of lysozyme. Agr. Biol. Chem.35, 1154–1156 (1971)Google Scholar
  27. 27.
    Jann, K., Jann, B., Ørskov, F., Ørskov, I., Westphal, O.: Immunchemische Untersuchungen an K-Antigenen vonEscherichia coli. II. Das K-Antigen von E.coli 08∶K42(A)∶H. Biochem. Z.342, 1–22 (1965)PubMedGoogle Scholar
  28. 28.
    Jann, K., Westphal, O.: Microbial polysaccharides. In: The Antigens (Sela, M., ed.) Vol. 3, pp. 1–125. New York: Academic Press 1975Google Scholar
  29. 29.
    Jeffrey, A.M., Zopf, D.A., Ginsburg, V.: Affinity-chromatography of carbohydrate-specific immunoglobulins: Coupling of oligosaccharides to Sepharose. Biochem. Biophys. Res. Commun.62, 608 (1974)CrossRefGoogle Scholar
  30. 30.
    Kabat, E.A., Mayer, M.M.: Experimental Immunochemistry, 2nd edition, pp. 241–264. Springfield: C.C. Thomas 1961Google Scholar
  31. 31.
    Kamicker, B.J., Schwartz, B.A., Olson, R.M., Drinkwitz, D.C., Gray, G.R.: Proteins containing reductively aminated disaccharides: Immunochemical characterization. Arch. Biochem. Biophys.183, 393–398 (1977)CrossRefPubMedGoogle Scholar
  32. 32.
    Kauffmann, F.: The bacteriology ofEnterobacteriaceae, Kopenhagen: Munksgaard 1966Google Scholar
  33. 33.
    Kickhöfen, B., Warth, R.: Eine Trennkammer für die Hochspannungselektrophorese nach dem Michl'schen Prinzip. J. Chromatogr.33, 558–560 (1968)CrossRefGoogle Scholar
  34. 34.
    Kim, Y.T., Kalver, S., Siskind, G.W.: A comparison of the Farr technique with equilibrium dialysis for measurement of antibody concentration and affinity. J. Immunol. Meth.6, 347–354 (1975)CrossRefGoogle Scholar
  35. 35.
    Kleinhammer, G., Himmelspach, K., Westphal, O.: Synthesis and immunological properties of an artificial antigen with the repeating oligosaccharide unit ofSalmonella illinois as haptenic group. Eur. J. Immunol.3, 834–838 (1973)PubMedGoogle Scholar
  36. 36.
    Kochetkov, N.K., Dimitriev, B.A., Chizhov, O.S., Klimov, E.M., Malysheva, N.N., Chernyak, A.Ya., Bayramova, N.E., Torgov, V.I.: Synthesis of derivatives of the trisaccharide repeating unit of the O-specific polysaccharide fromSalmonella anatum. Carbohydr. Res.33, C5-C7 (1974)CrossRefGoogle Scholar
  37. 37.
    Krebs, K.G., Heusser, D., Wimmer, H.: Sprühreagentien. In: Dünnschichtchromatographie (Stahl, E., ed.). pp. 813–861. Berlin: Springer 1967Google Scholar
  38. 38.
    Lemieux, R.U., Bundle, D.R., Baker, D.A.: The properties of a “synthetic” antigen related to the human blood-group Lewis a. J. Amer. Chem. Soc.97, 4076–4083 (1975)CrossRefGoogle Scholar
  39. 39.
    Lindberg, B.: Methylation analysis of polysaccharides. In: Methods in Enzymology, Vol. XXVIII: Complex Carbohydrates, Part B (Ginsburg, V., ed.). pp. 178–195. New York: Academic Press 1972Google Scholar
  40. 40.
    Lönngren, J., Goldstein, I.J., Niederhuber, J.E.: Aldonate Coupling, a simple procedure for the preparation of carbohydrate-protein conjugates for studies of carbohydrate-binding proteins. Arch. Biochem. Biophys.175, 661–669 (1976)CrossRefPubMedGoogle Scholar
  41. 41.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)PubMedGoogle Scholar
  42. 42.
    McBroom, C.R., Samanen, C.H., Goldstein, I.J.: Carbohydrate antigens: Coupling of carbohydrates to proteins by diazonium and phenylisothiocyanate reactions. In: Methods in Enzymology, Vol. XXVIII: Complex Carbohydrates, Part B (Ginsburg, V., ed.), pp. 212–219. New York: Academic Press 1972Google Scholar
  43. 43.
    Meyer-Delius, M., Mitchinson, N.A., Pitt-Rivers, R., Rüde, E.: Synthesis of a radioiodine-labelled 2,4-dinitrophenyl-hapten and its use for binding assays. Eur. J. Immunol.1, 267–271 (1971)PubMedGoogle Scholar
  44. 44.
    Minden, P., Farr, R.S.: In: Handbook of experimental immunology (Weir, D.M., ed.). p. 465. Oxford: Blackwell Scientific Publications (1967)Google Scholar
  45. 45.
    Morrison, J.M.: Determination of the degree of polymerization of oligo- and polysaccharides by gas-liquid chromatography. J. Chromatogr.108, 361–364 (1975)CrossRefPubMedGoogle Scholar
  46. 46.
    Niemann, H., Beilharz, H., Stirm, S.: Bacteriophage-borne enzymes in carbohydrate chemistry. II. Kinetics and substrate specificity of the glycanase activity associated with particles of theKlebsiella bacteriophage No.13. Carbohydr. Res.60, 353–366 (1978)Google Scholar
  47. 47.
    Nimmich, W.: Zur Isolierung und qualitativen Bausteinanalyse der K-Antigene von Klebsiellen. Z. Med. Mikrobiol. Immunol.154, 117–131 (1968)CrossRefPubMedGoogle Scholar
  48. 48.
    Osborn, M.J.: Studies on the gram-negative cell wall. I. Evidence for the role of 2-keto-3-deoxyoctonate in the lipopolysaccharide ofSalmonella typhimurium. Proc. Natl. Acad. Sci., USA50, 499–506 (1963)Google Scholar
  49. 49.
    Ottenstein, D.M., Bartley, D.A.: Separation of free acids C2-C5 in dilute aqueous solution column technology. J. Chromatogr. Sci.9, 673–681 (1971)Google Scholar
  50. 50.
    Porath, J., Asperg, K., Drevy, H., Axen, R.: Preparation of cyanogen bromide-activated agarose gels. J. Chromatogr.86, 53–56 (1973)CrossRefGoogle Scholar
  51. 51.
    Sawardeker, J.S., Sloneker, J.H., Jeanes, A.: Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal. Chem.12, 1602–1604 (1965)CrossRefGoogle Scholar
  52. 52.
    Schlecht, S., Westphal, O.: Wachstum und Lipopolysaccharid (O-Antigen)-Gehalt von Salmonellen bei Züchtung aus Agarnährböden. Zbl. Bakteriol. Parasitenk. Abt. I, Orig. A.,200, 241–259 (1966)Google Scholar
  53. 53.
    Seppälä, I.J.T.: Disturbance of hapten-antibody equilibria by ammonium sulphate solutions. A source of error in antibody affinity determinations. J. Immunol. Meth.9, 135–140 (1975)CrossRefGoogle Scholar
  54. 54.
    Shields, R., Burnett, W.: Determination of protein-bound carbohydrate in serum by a modified anthrone method. Analyt. Chem.32, 885–886 (1960)CrossRefGoogle Scholar
  55. 55.
    Stirm, S., Freund-Mölbert, E.:Escherichia coli capsule bacteriophages. II. Morphology. J. Virol.8, 330–342 (1971)PubMedGoogle Scholar
  56. 56.
    Sutherland, I.W.: The exopolysaccharides ofKlebsiella serotype 2 strains as substrates for phage-induced polysaccharide depolymerases. J. Gen. Microbiol.70, 331–338 (1971)Google Scholar
  57. 57.
    Thurow, H., Niemann, H., Rudolph, C., Stirm, S.: Host capsule depolymerase activity of bacteriophage particles active onKlebsiella K20 and K24 strains. Virology58, 306–309 (1974)CrossRefPubMedGoogle Scholar
  58. 58.
    Thurow, H., Choy, Y.M., Frank, N., Niemann, H., Stirm, S.: The structure ofKlebsiella serotype 11 capsular polysaccharide. Carbohydr. Res.41, 241–255 (1975)CrossRefPubMedGoogle Scholar
  59. 59.
    Thurow, H., Niemann, H., Stirm, S.: Bacteriophage-borne enzymes in carbohydrate chemistry. Part I. On the glycanase activity associated with particles ofKlebsiella bacteriophage No. 11. Carbohydr. Res.41, 257–271 (1975)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hildegard Geyer
    • 1
  • Stephan Stirm
    • 1
  • Karl Himmelspach
    • 1
  1. 1.Max-Planck-Institut für ImmunbiologieFreiburg/Br.Federal Republic of Germany

Personalised recommendations