Skip to main content
Log in

Der Glutathiongehalt der Linse bei verschiedenen Kataraktformen

  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Both the electrolyte ratio (K > Na) and high glutathione content of the lenses are generally undisturbed in the brunescent nuclear cataract (cataracta brunescens), the primary grey nuclear cataract, and the supranuclear cataract (senile cortical cataract). The electrolyte ratio (Na >K) and greatly decreased glutathione content are also grossly pathological in the subcapsular cataract (cataracta complicata, posterior subcapsular cataract), especially in connection with a secondary grey nuclear cataract, the mature cataract (cataracta matura), and the intumescent cataract. Alteration of the electrolyte concentrations and the glutathione content may be the results of physical, anatomical, and various metabolic disorders.

Zusammenfassung

Sowohl das Elektrolytverhältnis (K > Na) als auch der hohe Glutathiongehalt der Linsen sind weitgehend intakt bei braunem Kernstar (Katarakta brunescens), primärem grauem Kernstar, supranukleärem Star (typischem grauem Altersstar). Stark pathologisch sind sowohl das Elektrolytverhältnis (Na > K) als auch der (stark erniedrigte) Glutathiongehalt bei subkapsulärem Star (Kat. complikata, Permeabilitätskatarakt) besonders in Verbindung mit einem sekundären grauen Kernstar, dem reifen Star (Kat. matura) und dem gequollenen Star (Kat. intumescens). Sowohl die Änderung der Elektrolytverhältnisse als des Glutathiongehaltes dürften als sekundäre Folgen von (physikalischen) anatomischen- bzw. verschiedensten Stoffwechselschäden auftreten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Akerboom TPM, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373–382

    Google Scholar 

  • Augusteyn RC (1979) On the possible role of glutathione in maintaining human lens protein sulphydryls. Exp Eye Res 28: 665–671

    Google Scholar 

  • Anderson E, Spector A (1978) The state of sulphydryl groups in normal and cataractous human lens protein. I. nuclear region. Exp Eye Res 26: 407–417

    Google Scholar 

  • Bhuyan KC, Bhuyan DK, Podos SM (1981) Evidence of Increased Lipid Peroxidation in Cataracts. IRCS Medical Science 9: 126–127

    Google Scholar 

  • Bhuyan KC, Bhuyan DK (1977) Regulation of Hydrogen Peroxide in Eye Humors. Effect of 3-Amino-1H-1,2,4-Triazole on Catalase and Glutathione Peroxidase of Rabbit Eye. Biochim Biophys Acta 497: 641–651

    Google Scholar 

  • Dische Z, Zil H (1951) Studies on the oxidation of cysteine to cystine in lens proteins during cataract formation. Am J Ophthalmol 34: 104–113

    Google Scholar 

  • Friedburg D, Manthey KF (1973) Glutathione and NADP linked Enzymes in human senile cataract. Exp Eye Res 15: 173–177

    Google Scholar 

  • Garner MH, Spector A (1980) Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci USA 77: 1274–1277

    Google Scholar 

  • Harding JJ (1971) Disulphide cross-linked protein of high molecular weight in human cataractous lens. Exp Eye Res 17: 377–383

    Google Scholar 

  • Hata N, Hockwin O (1977) Enzymatic Determination of Reduced and Oxidized Glutathione in Bovine Lenses of Different Ages and Their Distribution in Lens Equator and Nucleus. Ophthal Res 9: 256–262

    Google Scholar 

  • Kinoshita JH (1964) Selected topics in ophthalmic biochemistry. Arch Ophthalm 72: 544–572

    Google Scholar 

  • Kuck JFR Jr (1970) In: CN Graymore (ed) Biochemistry of the eye. Academic Press London New York

    Google Scholar 

  • Mach H (1960) Untersuchungen von Linseneiweiß und Glutathion und Mikroelektrophoresen von wasserlöslichem Eiweiß im Zuckerstar. (Cataracta diabetica). Klin Mbl Augenheilk 149: 897–904

    Google Scholar 

  • Pau H (1949) Über Linsenveranderungen bei Achsenmyopie und im Alter. Graefes Arch Ophth 149: 431

    Google Scholar 

  • Pau H, Leithäuser U (1964) Die Kationenpumpe in ihrer Bedeutung für die verschiedenen erworbenen Katarakte. Graefes Arch Ophth 166: 440–450

    Google Scholar 

  • Pau H, Kuhlmann R, Schröter I (1973) Die Kationenpumpe in ihrer Bedeutung für die Flüssigkeitsverschiebung in der Linse und die Permeabilitätskatarakt. Graefes Arch Ophth 186: 165–174

    Google Scholar 

  • Pau H (1976) Die Häufigkeit der verschiedenen Formen der Alterskatarakt. Klin Mbl Augenheilk 169: 158–164

    Google Scholar 

  • Rathbun WB, Hanson SK (1979) Glutathione Metabolic Pathway as a Scavenging System in the Lens. Ophthalmic Res 11: 172–176

    Google Scholar 

  • Rathbun WB (1980) Glutathione Biosynthesis in the Lens and Erythrocyte. In: Srivastava (ed) Red blood cell and lens metabolism. Elsevier North Holland, Inc pp 169–173

    Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27: 502–522

    Google Scholar 

  • Truscott RJW, Augusteyn RC (1977) The state of sulphydryl groups in normal and cataractous human lenses. Exp Eye Res 25: 139–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pau, H., Graf, P. & Sies, H. Der Glutathiongehalt der Linse bei verschiedenen Kataraktformen. Graefe's Arch Clin Exp Ophthalmol 219, 140–142 (1982). https://doi.org/10.1007/BF02152299

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02152299

Navigation