Skip to main content
Log in

The three-dimensional organization of lens fibers in the rhesus monkey

  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The three-dimensional organization of lens fibers in the Rhesus monkey was studied by means of scanning electron microscopy. The mutual anchoring of lens fibers is brought about by three types of interlocking devices: (1) interlocking protrusions on the apical and lateral edges, (2) ball-and-socket junctions on the apical and lateral surfaces, and (3) microplicae or tongues and grooves on the apical and lateral surfaces. Interlocking protrusions are present all over the lens, whereas ball-and-socket junctions and microplicae are restricted to cortical and nuclear regions, respectively. The distinction between interlocking protrusions and ball-and-socket junctions is discused in detail.

Zusammenfassung

Die 3-dimensionale Ultrastruktur der Linsenfasern des Rhesus-Affen wurde mit Hilfe des Rasterelektronenmikroskops untersucht. Die Verankerung der Linsenfasern kommt zustande durch: (1) ineinandergreifende Protrusionen an den apikalen und lateralen Kanten der Fasern, (2) Kugel-Verankerungen an den apikalen und lateralen Oberflächen der Fasern, (3) Mikroplikae an den Oberflächen der Fasern. Protrusionen wurden gefunden in alien Abschnitten der Linse, wä hrend Kugel-Verankerungen nur im Cortex und Mikroplicae nur im Nucleus gefunden wurden. Der Unterschied zwischen ineinandergreifenden Protrusionen und Kugel-Verankerungen wird im Detail diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broekhuyse RM, Kuhlmann ED, Bijvelt J, Verkley AJ Ververgaart PHJTh (1978) Lens membranes III freeze fracture morphology and composition of bovine lens fibre membranes in relation to ageing. Exp Eye Res 26: 147–156

    Google Scholar 

  • Cohen AI (1965) The electron microscopy of the normal human lens. Invest Ophthalmol 4: 433–446

    Google Scholar 

  • Dickson DH, Crock GW (1972) Interlocking patterns on primate lens fibers. Invest Ophthalmol 11: 809–815

    Google Scholar 

  • Farnsworth PN, Fu SCJ, Burke PA, Bahia I (1974) Ultrastructure of rat eye lens. Invest Ophthalmol 13: 274–279

    Google Scholar 

  • Futagami T (1962) Electron microscopic study of lens fiber with special references to its processes. Acta Soc Ophthalmol Jpn 66: 130–140

    Google Scholar 

  • Goodenough DA, Dick JSB II, Lyons JE (1980) Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze substitution autoradiography and electron microscopy. J Cell Biol 86: 576–589

    Google Scholar 

  • Hansson H (1970) Scanning electron microscopy of the lens of the adult rat. Z Zellforsch Mikrosk Anat 107: 187–198

    Google Scholar 

  • Harding CV, Susan S, Murphy H (1976) Scanning electron microscopy of the adult rabbit lens. Ophthalmic Res 8: 443–455

    Google Scholar 

  • Harding CV, Susan S, Jampel RS, Cohen E (1978) Unit membrane redundancy in spherical structures within the ocular lens. Ophthalmic Res 10: 7–15

    Google Scholar 

  • Hogan MJ, Alvaredo JA, Weddell JP (1971) Histology of the human eye. Saunders, Philadelphia, pp 628–677

    Google Scholar 

  • Kuszak J, Alcata J, Maisel H (1980) The surface morphology of embryonic and adult chick lens-fiber cells. Am J Anat 159: 395–410

    Google Scholar 

  • Kuwabara T (1975) The maturation of the lens cell: a morphologic study. Exp Eye Res 20: 427–443

    Google Scholar 

  • Litwin JA (1980) Freeze-fracture demonstration of intercellular junctions in rabbit lens. Exp Eye Res 30: 211–214

    Google Scholar 

  • Matsuto T (1973) Scanning electron microscopic studies on the normal and cataractous human lenses. Acta Soc Ophthalmol Jpn 77: 853–872

    Google Scholar 

  • Ohkuma M (1976) Freeze-fracture replicas of tight and gap junctions in the eye. Yamada E and Mishima S (eds) Proc 3rd Symp. Structures of the Eye, III. Jap J Ophthalmol, pp 87–102

  • Okinami S (1978) Freeze-fracture replica of the primate lens. Graefe's Arch Clin Exp Ophthalmol 209: 52–58

    Google Scholar 

  • Peters A (1970) The fixation of central nervous tissue and analysis of electron micrographs, with special reference to the cerebral cortex. In: Nauta WJH, Ebbeson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 56–76

    Google Scholar 

  • Sakuragawa M, Kuwabara T, Kinoshita JH, Fukui HN (1975) Swelling of lens fibers. Exp Eye Res 21: 381–394

    Google Scholar 

  • Wanko R, Gavin MA (1959) Electron microscope study of lens fibers. J Biophys Biochem Cytol 6: 97–102

    Google Scholar 

  • Willekens B, Vrensen G (1981) The three-dimensional organization of lens fibers in the rabbit: a scanning electron microscopic reinvestigation. Graefe's Arch Clin Exp Ophthalmol 216: 275–289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willekens, B., Vrensen, G. The three-dimensional organization of lens fibers in the rhesus monkey. Graefe's Arch Clin Exp Ophthalmol 219, 112–120 (1982). https://doi.org/10.1007/BF02152295

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02152295

Keywords

Navigation