Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 1, pp 7–12 | Cite as

Detergent binding to unmyristylated protein kinase A—Structural implications for the role of Myristate

  • Janusz M. Sowadski
  • Charles A. Ellis
  • Madhusudan
Article

Abstract

Myristylation often governs the targeting of protein kinases to the plasma membrane. It is now known that a key member of the src family of protein tyrosine kinases, pp60v-src, binds to the lipid bilayer of the plasma membrane via a myristylated amino terminal sequence. The mechanism of this interaction is not known; however, myristic acid (Myristic acid may also be referred to as Myristate) and residues 2 through 14 are also absolutely required (Resh and Ling, 1990). This review presents an analysis of crystal structures of detergent-modified recombinant and myristylated mammalian catalytic subunit of protein kinase A. Crystals of unmyristylated recombinant catalytic subunit of protein kinase A are grown in the presence of Mega 8, a glucamide-type of detergent, and only this detergent binds, which results in a resolution extension (Knightonet al., 1991a). Comparisons of these two structures reveal that the detergent association with the recombinant enzyme binds in exactly the same hydrophobic pocket of the protein occupied by myristic acid in the mammalian protein (Karlssonet al., 1993; Zhenget al., 1993a). Removal of the detergent through soaking results in the local unwinding of the first helix, helix A, and disorder of the canonical recognition sequence of the phosphorylation site, Ser 10 (Zhenget al., 1993b). These results suggest that anchoring the myristic acid inside the protein results in formation of a stable structural template, which includes the myristylated amino terminal sequence important for the recognition by protein kinases. This “inside out” motif might provide a structural paradigm for the recognition of myristylated proteins, including pp60v-src.

Key words

Protein kinase A protein phosphorylation myristylated amino terminal detergent interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bossemeyer, D., Engh, R. A., Kinzel, V., Ponstingl, H., and Huber, R. (1993).EMBO J. 12, 849–859.PubMedGoogle Scholar
  2. Brooks-Wilson, A. R., Ball, E., and Pawson, T. (1989).Mol. Cell. Biol. 9, 2214–2219.PubMedGoogle Scholar
  3. Chow, M., Newman, J. F. E., Filman, D., Hogle, J. M., Rowlands D. J., and Brown, F. (1987).Nature 327, 482–486.PubMedGoogle Scholar
  4. Cross, F. R., Garber, E. A., Pellman, D., and Hanafusa, H. (1984).Mol. Cell. Biol. 4, 1834–1842.PubMedGoogle Scholar
  5. De Bondt, H. L., Rosennlatt, J., Jancarik, J., Jones, H. D., Morgan, D. O., and Kim, S. H. (1993).Nature 363, 595–602.PubMedGoogle Scholar
  6. Garber, E. A., Cross, F. R., and Hanafusa, H. (1985).Mol. Cell. Biol. 5, 2781–2788.PubMedGoogle Scholar
  7. Hanks, S., and Quinn, A. M. (1991). InProtein Phosphorylation (Part A) (Hunter, T., and Sefton, B. M., eds.), Academic Press, San Diego, pp. 38–62.Google Scholar
  8. Herberg, F. W., Bell, S. M., and Taylor, S. S. (1993).Protein Eng. 6, 771–777.PubMedGoogle Scholar
  9. Hu, S.-H., Parker, M. W., Lei, J. Y., Wilce, M. C. J., Benian, G. M., and Kemp, B. E. (1994).Nature 369, 581–584.PubMedGoogle Scholar
  10. Hubbard, S. R., Wei, L., Ellis, L., and Hendrickson, W. A. (1994).Nature 372, 746–754.PubMedGoogle Scholar
  11. Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N. P. (1995).Nature 376, 313–320.PubMedGoogle Scholar
  12. Kamps, M. P., Buss, J. E., and Sefton, B. M. (1985).Proc. Natl. Acad Sci. USA 82, 4625–4628.PubMedGoogle Scholar
  13. Karlsson, R., Zheng, J., Xuong, N.-H., Taylor, S. S., and Sowadski, J. M. (1993).Acta Cryst. D49, 381–388.Google Scholar
  14. Karlsson, R., Madhusudan, Taylor, S. S., and Sowadski, J. M. (1994).Acta Cryst. D50, 657–662.Google Scholar
  15. Knighton, D. R., Zheng, J., Ten Eyck, L. F., Ashford, V. A., Xuong, N.-H., Taylor, S. S., and Sowadski, J. M. (1991a).Science 253, 407–414.PubMedGoogle Scholar
  16. Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N.-H., Taylor, S. S., and Sowadski, J. M. (1991b).Science 253, 414–420.PubMedGoogle Scholar
  17. Knighton, D. R., Bell, S. M., Zheng, J., Ten Eyck, L. F., Xuong, N.-H., Taylor, S. S., and Sowadski, J. M. (1993).Acta Cryst. D49, 357–361.Google Scholar
  18. Madhusudan, Trafny, E. A., Xuong, N.-H., Adams, J. A., Ten Eyck, L. F., Taylor, S. S., and Sowadski, J. M. (1994).Protein Sci. 3, 176–187.PubMedGoogle Scholar
  19. McLaughlin, S., and Aderem, A. (1995).Trends in Biochem. Sci. 20, 272–276.Google Scholar
  20. Resh, M. D. (1990).Oncogene 5, 1437–1444.PubMedGoogle Scholar
  21. Resh, M. D., and Ling, H.-P. (1990).Nature 346, 84–86.PubMedGoogle Scholar
  22. Sigal, C. T., Zhoo, W., Buser, C. A., McLaughlin, S., and Resh, M. D. (1994).Proc. Natl. Acad. Sci. USA 91, 12253–12257.PubMedGoogle Scholar
  23. Xu, R.-M., Carmel, G., Sweet, R. M., Kuret, J., and Cheng, X. (1995).EMBO J. 14, 1015–1023.PubMedGoogle Scholar
  24. Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994).Nature 367, 704–711.PubMedGoogle Scholar
  25. Zheng, J., Knighton, D. R., Xuong, N.-H., Taylor, S. S., Sowadski, J. M., and Ten Eyck, L. F. (1993a).Protein Sci. 2, 1559–1573.PubMedGoogle Scholar
  26. Zheng, J., Trafny, E. A., Knighton, D. R., Xuong, N.-H., Taylor, S. S., Ten Eyck, L. F., and Sowadski, J. M. (1993b).Acta Cryst. D49, 362–365.Google Scholar
  27. Zheng, J., Knighton, D. R., Ten Eyck, L. F., Karlsson, R., Xuong, N.-H., Taylor, S. S., and Sowadski, J. M. (1993c).Biochemistry 32, 2154–2161.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Janusz M. Sowadski
    • 1
  • Charles A. Ellis
    • 1
  • Madhusudan
    • 1
  1. 1.Department of MedicineUniversity of California at San DiegoLa Jolla

Personalised recommendations