Journal of Geometry

, Volume 1, Issue 1, pp 18–40 | Cite as

On flat Laguerre planes

  • Hansjoachim Groh
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Benz: Pseudoovale und Laguerre-Ebenen. Abh. Math. Sem. Hamburg 1964 (27, 80–84).Google Scholar
  2. [2]
    W. Benz and H. Mäurer: Grundlagen der Laguerre — Geometrie. Jahresber Deutsch. Math. Vereinigung 1964 (67, 14–42).Google Scholar
  3. [3]
    J. Dugundji: Topology Allyn and Bacon, Boston 1966.Google Scholar
  4. [4]
    H. Groh: Topologische Laguerre-Eberren I Abh. Math. Sem. Hamburg 1968 (32, 216–231).Google Scholar
  5. [5]
    H. Groh: Topologische Laguerre-Ebenen II. Abh. Math. Sem. Hamburg 1969 (34, 11–21).Google Scholar
  6. [6]
    H. Groh: Flat Moebius planes. To appear in Geometriae dedicata, Vol. 1.Google Scholar
  7. [7]
    H. Groh: Laguerre planes generated by Moebius planes. To appear.Google Scholar
  8. [8]
    H. Groh: Flat Moebius and Laguerre planes. To appear.Google Scholar
  9. [9]
    H. Gusciora: A System of axioms of the real plane Laguerre geometry. Bull. Acad. Polonaise 1965 (13, 363–366).Google Scholar
  10. [10]
    U. Iversen: Zum Begriff der topologischen Laguerre-Ebene. Abh. Math. Sem. Hamburg 1970 (34, 227–237).Google Scholar
  11. [11]
    H. Mäurer: Moulton-Laguerre-Ebenen. To appear.Google Scholar
  12. [12]
    B. L. van der Waerden and L. J. Smid: Eine Axiomatik der Kreis-Geometrie und der Laguerre-Geometrie. Math. Ann. 1935 (110, 753–776).Google Scholar
  13. [13]
    G. T. Whyburn: Topological Analysis. Princeton 1958.Google Scholar

Copyright information

© Birkhäuser Verlag 1971

Authors and Affiliations

  • Hansjoachim Groh
    • 1
  1. 1.Department of MathematicsLakehead UniversityOntarioCanada

Personalised recommendations