Neurophysiology

, Volume 20, Issue 6, pp 564–571 | Cite as

Response induced in prog motoneurons by glutamate application

  • N. I. Kalinina
  • G. G. Kurchavyi
Article
  • 17 Downloads

Abstract

It was shown during experiments on isolated frog brain (fromRanaridibunda) that response to microelectrophoretically injected glutamate on to various points on the somatodendritic motoneuronal membrane (GLU response) displayed the same properties as EPSP induced in the same motoneuron by activation of three different synaptic inputs. Techniques of transmembrane polarization and current chop by means of a single microelectrode were used in this research. Mean levels of reversal potentials of GLU response and EPSP occurring as a result of stimulating the reticular formation, dorsal root, and microstimulation of presynaptic elements at the point of glutamate application equaled −16.9 ± 1.7 (n=13), −6.8 ± 1.7 (n=13), −9.8 ± 1.8 (n=6), and −15.1 ± 1.4 mV (n=13), respectively. Summation of GLU response and EPSP were quasilinear. Changes (upwards) in conductance associated with GLU response did not exceed 10%. Findings would indicate that glutamate, acting on the postsynaptic membrane receptors, induces depolarization and may serve as transmitter in all three inputs investigated.

Keywords

Glutamate Dorsal Root Membrane Receptor Synaptic Input Reticular Formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. I. Kalinina and G. G. Kurchavyi, “Reversal potential of monosynaptic EPSP in frog motoneurons,” Paper given at 9th Conf. on Evolutionary Physiology, Leningrad (1986).Google Scholar
  2. 2.
    N. I. Kalinina, G. G. Kurchavyi, and B. T. Ryabov, “Reversal potentials of monosynaptic EPSP in frog motoneurons,” Neirofiziologiya,18, No. 4, 534–542 (1986).Google Scholar
  3. 3.
    G. G. Kurchavyi and B. T. Ryabov, “Measurement of postsynaptic currents in frog motoneurons using single electrode voltage-clamp technique,” Fiziol. Zh., SSSR,70, No. 1, 94–97 (1984).Google Scholar
  4. 4.
    M. M. Chmykhova, A. L. Babalyan, N. I. Kalinina, et al., “Structure of and ionic mechanisms underlying suprasegmental input into frog lumbar motoneurons,” Paper given at 15th Cong. of National Physiological Society, Kishinev (1987), Vol. 2, pp. 221–222.Google Scholar
  5. 5.
    A. I. Shapovalov, Neutrons and Synapses of Supraspinal Motor Systems [in Russian], Nauka, Leningrad (1975).Google Scholar
  6. 6.
    A. I. Shapovalov and B. I. Shiryaev, Signal Transmission at Interneuronal Synapses [in Russian], Nauka, Leningrad (1987).Google Scholar
  7. 7.
    B. I. Shiryaev, “Synaptic influences on frog motoneurons during stimulation of the dorsal roots and dorsal colums of the spinal cord,” Byull. Éksp. Biol. Med.,73, No. 5, 6–10 (1971).Google Scholar
  8. 8.
    S. M. Antonov, E. V. Grishin, L. G. Magazanik, et al., “Argiopin blocks the glutamate responses and sensory-motor transmission in motoneurones of isolated frog spinal cord,” Neurosci. Lett.,83, No. 1, 179–184 (1987).Google Scholar
  9. 9.
    M. S. Arenson and A. Nistri, “A novel inhibitory-excitatory response of frog motoneurones in vitro to glutamate,” J. Physiol.,328, 9P (1982).Google Scholar
  10. 10.
    A. L. Babalian and N. M. Chmykhova, “Morphophysiological characteristics of connections between single ventrolateral tract fibres and individual motoneurones in the frog spinal cord,” Brain Res.,407, No. 2, 394–397 (1983).Google Scholar
  11. 11.
    T. H. Brown and D. Jonston, “Voltage clamp analysis of mossy fiber synaptic input to hippocampal neurons,” J. Neurophysiol.,50, 487–507 (1983).Google Scholar
  12. 12.
    V. Crunelli, S. Forda, and J. S. Kelly, “The reversal potential of excitatory amino acid action of granule cells of the rat dentate gyrus,” J. Physiol.,35, 327–342 (1984).Google Scholar
  13. 13.
    D. R. Curtis, “The actions of amino acids upon mammalian neurones,” in: Studies in Physiology, Berlin (1965), pp. 34–42.Google Scholar
  14. 14.
    G. E. Fagg and A. C. Foster, “Amino acid neurotransmitters and their pathways in the mammalian central nervous system,” Neuroscience,9, No. 4, 701–719 (1983).Google Scholar
  15. 15.
    R. Grantyn, A. I. Shapovalov, and B. I. Shiriaev, “Tracing of frog sensory-motor synapses by intracellular injection of horseradish peroxidase,” J. Physiol.,349, 441–474 (1984).Google Scholar
  16. 16.
    J. J. Hablitz and I. A. Langmoen, “Excitation of hippocampal pyramidal cells by glutamate in the guinea-pig and rat,” J. Physiol.,325, 317–331 (1982).Google Scholar
  17. 17.
    J. T. Hacket, S. M. Hou, and S. L. Cohran, “Glutamate and synaptic depolarization of Purkinje cells evoked by parallel fibres and by climbing fibres,” Brain Res.,170, No. 2, 377–380 (1979).Google Scholar
  18. 18.
    H. Kumura, K. Okamoto, and Y. Sakai, “Pharmacological evidence for L-aspartate as the neurotransmitter of cerebellar climbing fibres in the guinea-pig,” J. Physiol.,365, 103–119 (1985).Google Scholar
  19. 19.
    R. L. MacDonald, R. Y. K. Pun, E. A. Neale, and P. G. Nelson, “Synaptic interaction between mammalian central neurones in cell culture. 1. Reversal potential for excitatory postsynaptic potentials,” J. Neurophysiol.,49, No. 6, 1428–1441 (1983).Google Scholar
  20. 20.
    G. Matthews and W. O. Wickelgren, “Glutamate and synaptic excitation of recticulospinal neurones of lamprey,” J. Physiol.,293, 417–433 (1979).Google Scholar
  21. 21.
    P. G. Nelson, P. Y. K. Pun, and G. Westbrook, “Synaptic excitation in cultures of mouse spinal cord neurones: receptor pharmacology and behaviour of synaptic currents,” J. Physiol.,372, 169–190 (1986).Google Scholar
  22. 22.
    A. I. Shapovalov, B. I. Shiriaev, and A. A. Velumian, “Mechanisms of post-synaptic excitation in amphibian motoneurones,” J. Physiol.,279, 437–455 (1978).Google Scholar
  23. 23.
    U. Sonnhof, M. Linder, F. Grafe, and G. Krumnikl, “Postsynaptic actions of glutamate on somatic and dendritic membrane areas of lumbar motoneurones of the frog,” Pflügers Arch.,355, Suppl., 171 (1975).Google Scholar
  24. 24.
    J. S. Watkins and R. H. Evans, “Excitatory amino acid transmitters,” Annu. Rev. Pharmacol.,21, 165–204 (1981).Google Scholar
  25. 25.
    R. Werman, “The reversal potential as a diagnostic tool in transmitter identification,” in: Receptors for Neurotransmitters and Peptide Hormones, Raven Press, New York (1980), pp. 21–30.Google Scholar
  26. 26.
    W. A. Wilson and M. M. Goldner, “Voltage clamping with single microelectrodes,” J. Neurobiol.,6, No. 4, 411–422 (1975).Google Scholar
  27. 27.
    W. Zieglgänsberger and E. A. Puil, “Actions of glutamic acid on spinal neurones,” Exp. Brain Res.,17, 35–49 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • N. I. Kalinina
  • G. G. Kurchavyi

There are no affiliations available

Personalised recommendations