Skip to main content
Log in

Low concentrations of ouabain stimulate Na/Ca exchange in neurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The effect of low concentrations of ouabain on22Na efflux,86Rb influx,45Ca uptake and cyclic AMP levels were studied in snail ganglia. Ouabain, at concentrations below that which inhibits the Na−K pump as monitored by86Rb influx, activated “reverse mode” Na/Ca exchange, as indicated by an increased22Na efflux and45Ca influx.

  2. 2.

    With electrophysiologic recordings ouabain, in the presence of K+-free saline to block Na/K transport, caused a membrane hyperpolarization. These concentrations of ouabain also caused elevation of intracellular cyclic AMP levels.

  3. 3.

    We suggest that the ouabain-induced stimulation of Na efflux is due to a stimulation of reverse Na/Ca exchange. since Na/Ca exchange is electrogenic, these observations are most consistent with ouabain stimulation of Na/Ca exchange in a reversed direction (intracellular Na for extracellular Ca).

  4. 4.

    The effect on Na/Ca exchange may be secondary to a rise in intracellular cyclic AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H., and Slayman, C. L. (1966). Membrane potential and conductance during the transport of sodium, potassium, rubidium in frog muscle.J. Physiol. Lond. 184:970–1014.

    PubMed  Google Scholar 

  • Ayrapetyan, S. N. (1976). Involvement of the sodium pump in slow oscillations underlying the bursting patterns in Helix neurons. InNeurobiology of Invertebrates (J. Salanki, Ed.), Akadémiai Kiadó, Budapest, pp. 353–370.

    Google Scholar 

  • Ayrapetyan, S. N., Suleymanian, M. A., Saghian, A. A., and Dadalian, S. S. (1984). Autoregulation of the electrogenic sodium pump.Cell. Mol. Neurobiol. 4:367–384.

    Article  PubMed  Google Scholar 

  • Ayrapetyan, S. N., and Arvanov, V. L. (1988). The metabolic regulation of membrane chemosensitivity.Symp. Biol. Hung. 36:669–684.

    Google Scholar 

  • Baker, P. F. (1976). The regulation of intracellular calcium.Soc. Exp. Biol. 83:69–78.

    Google Scholar 

  • Bers, D. M., Christensen, D. M., and Nguyen, T. X. (1988). Can Ca entry via Na−Ca exchange directly activate cardiac muscle contractions.J. Mol. Cell. Cardiol. 20:405–414.

    Article  PubMed  Google Scholar 

  • Bittar, E. E. (1983). Some aspects of sodium efflux from single barnacle muscle fibers.J. Comp. Biochem. Physiol. 76A:763–771.

    Article  Google Scholar 

  • Bittar, E. E., and Huany, Y. P. (1990). The behavior of the oubain-insensitive sodium efflux in single barnacle muscle fibers toward the microinjection of aluminum.Toxicol. Appl. Pharmacol. 106:71–79.

    Article  PubMed  Google Scholar 

  • Blaustein, M. P. (1985). The cellular basis of cardiotonic steroid action.TIPS 6:289–292.

    Google Scholar 

  • Blaustein, M. P., Goldman, W. F., Fontana, G., Krueger, B. K., Santiago, E. M., Steele, T. D., Weiss, D. N., and Yarowsky, P. J. (1991). Physiological roles of the sodium-calcium exchanger in nerve and muscle.Ann. N.Y. Acad. Sci. 639:254–274.

    PubMed  Google Scholar 

  • Beyer, M. D., and Fredin, D. (1991). Feedback inhibition of cyclic adenosine monophosphatestimulated Na+ transport in the rabbit cortical collecting duct via Na+-dependent basolateral Ca++ entry.J. Clin. Invest. 88:1502–1510.

    PubMed  Google Scholar 

  • Deitmer, J. W., and Ellis, D. (1978). The intracellular sodium activity of cardiac Purkinje fibers during the inhibition and re-activation of Na−K pump.J. Physiol. Lond. 284:241–259.

    PubMed  Google Scholar 

  • DiPolo, R. (1976). The influence of nucleotides upon Ca fluxes.Fed. Proc. 35:2579–2582.

    PubMed  Google Scholar 

  • DiPolo, R. (1977). Characterization of the ATP-dependent Ca efflux in dialyzed squid axons.J. Gen. Physiol. 69:795–814.

    Article  PubMed  Google Scholar 

  • DiPolo, R. (1989). The sodium-calcium exchange in intact cells. InSodium Calcium Exchange (T. J. A. Allen, D. Noble, and H. Reutier, Eds.), Oxford University Press, Oxford, pp. 5–26.

    Google Scholar 

  • DiPolo, R., and Beauge, L. (1986). Reverse Na−Ca exchange requires internal Ca and/or ATP in squid axon.Biochim. Biophys. Acta 854:298–306.

    Google Scholar 

  • DiPolo, R., and Beauge, L. (1990). Calcium transport in excitable cells. InIntracellular Calcium Regulation (F. Bronner, Ed.), Liss, New York, pp. 381–413.

    Google Scholar 

  • DiPolo, R., and Beauge, L. (1991). Regulation of Na−Ca exchange.N. Y. Acad. Sci. 639:100–111.

    Google Scholar 

  • Eisner, D. A., and Lederer, W. J. (1985). Na−Ca exchange: Stoichiometry and electrogenicity.Am. J. Physiol. 248 (Cell Physiol. 17): C189-C202.

    PubMed  Google Scholar 

  • Eisner, D. A., and Lederer, W. J. (1989). The electrogenic sodium-calcium exchange. In (T. J. A. Allen, D. Noble, and H. Reuter, Eds.),Sodium-Calcium Exchange Oxford University Press. Oxford pp. 178–207.

    Google Scholar 

  • Kimura, M., Aviv, A., and Reeves, J. P. (1993). K+-dependent Na+/Ca2+ exchange in human platelets.J. Biol. Chem. 268:6874–6877.

    PubMed  Google Scholar 

  • Lee, C. O. (1985). 200 years of digitalis: The emerging central role of the sodium ion in the control of cardiac force.Am. J. Physiol. 249 (Cell Physiol. 18):C367-C378.

    PubMed  Google Scholar 

  • McCall, D. (1973). Effect of low concentrations of ouabain of ion exchange in cultured cells.Am. J. Cardiobiol. 1:145.

    Article  Google Scholar 

  • Michael, L., Pitts, B. J. R., and Schwartz, A. (1978). Is the pump stimulation associated with positive inotropy of the heart?Science 200:1287–1289.

    PubMed  Google Scholar 

  • Mulkey, R. M., and Zucker, R. S. (1992). Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation.J. Neurosci. 12:4327–4336.

    PubMed  Google Scholar 

  • Mullins, L. J. (1979). The generation of electric currents in cardiac fibers by Na/Ca exchange.Am. J. Physiol. 236 (Cell Physiol. 5):C103–110.

    PubMed  Google Scholar 

  • Noble, D. (1980). Mechanism of action of therapeutic levels of cardiac glycosides.Cardiovasc. Res. 14:495–514.

    PubMed  Google Scholar 

  • Orrego, F. (1984). Calcium and the mechanisms of action of digitalis.Gen. Pharmacol. 4: 273–280.

    Google Scholar 

  • Palmer, R. F., Lasseter, K. C., and Melvin, S. L. (1966). Stimulation of Na+, K-dependent adenosine triphosphatase by ouabain.Arch. Biochem. Biophys. 113:629–633.

    Article  PubMed  Google Scholar 

  • Reeves, J. P. (1990). Sodium-calcium exchange. InIntracellular Calcium Regulation (F. Bronner, Ed.), Liss, New York, pp. 305–347.

    Google Scholar 

  • Roevens, P., and de Chaffoy de Courcelles, D. (1990). Ouabain increases the calcium concentration in intracellular stores involved in stimulus-response coupling in human platelets.Circ. Res. 67:1494–1502.

    PubMed  Google Scholar 

  • Saghian, A. A., Dadalyan, S. S., Suleymanyan, M. A., and Takenaka, T. (1986). The effects of short-chain fatty acids on the neuronal membrane functions ofHelix pomatia. 3.22Na efflux from the cells.Cell Mol. Neurobiol. 6:397–405.

    Article  PubMed  Google Scholar 

  • Saghian, A. A. (1991). Oubain-insensitive efflux of the Na ions from the neurons ofHelix pomatia.Biol. Mem. 7:711–718.

    Google Scholar 

  • Schatzman, H. J. (1953). Herzglycoside als Hemmstoffe für den activen Kalium und Natrium durch die Erythrocytenmembran.Helv. Physiol. Pharmacol. Acta 11:346–354.

    PubMed  Google Scholar 

  • Schwartz, A., Lindenmayer, G. E., and Allen, J. C. (1985). The sodium-potassium adenosine triphosphatase pharmacological, physiological and biochemical aspects.Pharmacol. Rev. 2:84–85.

    Google Scholar 

  • Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerve.Biochim. Biophys. Acta 23:394–401.

    Article  PubMed  Google Scholar 

  • Stys, P. K., Waxman, S. G., and Ransom, B. R. (1991). Reverse operation of the Na+−Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian CNS white matter.Ann. N. Y. Acad. Sci. 639:328–332.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saghian, A.A., Ayrapetyan, S.N. & Carpenter, D.O. Low concentrations of ouabain stimulate Na/Ca exchange in neurons. Cell Mol Neurobiol 16, 489–498 (1996). https://doi.org/10.1007/BF02150229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02150229

Key Words

Navigation