Skip to main content
Log in

The valence-state energy of the tetravalent carbon atom

  • Informationen
  • Studiorum Progressus
  • Published:
Experientia Aims and scope Submit manuscript

Zusammenfassung

Die Theorie von Valenzzuständen wird im Zusammenhang mit wahren oder «intrinsischen» (als verschieden von thermochemischen) Bindungsenergien diskutiert.

Mit den augenblicklich zur Verfügung stehenden Kenntnissen können nur annähernde Schätzungen der Energien der Valenzzustände gemacht werden. Dies ist für das Beispiel von vierwertigem Kohlenstoff mit einer Anzahl von unabhängigen Methoden unternommen worden. Der angedeutete Wert ist etwa 60–70 kcal höher als der Grundzustand. Da der Valenzzustand in Beziehung mit der Sublimationswärme des Kohlenstoffs steht, liefert er Belege bezüglich des letzteren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Mecke, Nature125, 526 (1930).

    Article  CAS  Google Scholar 

  2. R. Mecke, Z. Elektrochem.36, 595 (1930).

    Google Scholar 

  3. W. Heitler andG. Rumer, Z. Physik68, 12 (1931).

    Article  CAS  Google Scholar 

  4. R. G. W. Norrish, Trans. Faraday Soc.30, 103 (1934).

    Article  CAS  Google Scholar 

  5. J. H. Van Vleck, J. Chem. Phys.2, 20, 297 (1934).

    Article  Google Scholar 

  6. J. H. Van Vleck andA. Sherman, Rev. Modern Phys.7, 167 (1935).

    Article  Google Scholar 

  7. R. S. Mulliken, J. Chem. Phys.2, 782 (1934).

    Article  CAS  Google Scholar 

  8. H. H. Voge, J. Chem. Phys.4, 581 (1936);16, 984 (1948).

    Article  CAS  Google Scholar 

  9. C. A. Coulson, Quart. Rev. Chem. Soc.1, 165 (1947).

    Article  Google Scholar 

  10. That the figure 7 eV is much too high, may be readily seen from a consideration of acetylene and its halogen derivatives. The ground state of these molecules is unquestionably X-C≡C-X, but this would be stable relative to X-C-C-X only as long as the difference in the bond-energy sum for the two structures exceeded the sum of the promotional energies of the two carbon atoms. A figure even approaching 7 eV for each atom is accordingly seen to be excluded. SeeL. H. Long, Z. Elektrochem.54, 79 ff. (1950).

  11. G. Nordheim-Pöschl, Ann. Physik [v],26, 258, 281 (1936).

    Article  Google Scholar 

  12. L. H. Long andR. G. W. Norrish, Proc. Roy. Soc. A187, 337 (1946).

    CAS  Google Scholar 

  13. C. W. Ufford, Phys. Rev. [ii],53, 568 (1938).

    Article  CAS  Google Scholar 

  14. A. G. Shenstone, Phys. Rev. [ii],72, 411 (1947).

    Article  CAS  Google Scholar 

  15. L. H. Long, Z. Elektrochem.54, 77 (1950).

    CAS  Google Scholar 

  16. L. Pauling, Z. Naturforsch.3a, 438 (1948).

    Article  CAS  Google Scholar 

  17. L. Pauling, Proc. Nat. Acad. Sci., U.S.35, 229 (1949).

    Article  CAS  Google Scholar 

  18. L. Pauling andW. F. Sheehan (Jr.),ibid.,. p. 359.

    Article  CAS  Google Scholar 

  19. L. H. Long, Proc. Roy. Soc. A198, 62 (1949).

    Google Scholar 

  20. A much higher value around 170 kcal has frequently been proposed, but there is no objection-free evidence in support of it, and the weight of the evidence indicates that it can be excluded. From independent considerations,Pauling andSheehan (loc. cit.). also exclude this value. ThatPauling andSheehan favour a value somewhat higher than 125 kcal is due to their assumption that the carbon in the ground state of CN and the lowest triplet state of CO is in the divalent (and not tetravalent) state. See later andL. H. Long, Research, London3, 291 (1950).

    Google Scholar 

  21. E. J. Prosen, K. S. Pitzer, andF. D. Rossini, J. Research National Bur. Standards, U. S.34, 403 (1945).

    Article  CAS  Google Scholar 

  22. The figure forD(CH3-H) is that given byG. B. Kistiakowsky andE. R. Van Artsdalen, J. Chem. Phys.12, 469 (1944), after correcting for an improved value ofD(HBr) involved in the calculation [cf.L. H. Long, Proc. Roy. Soc. A198, 65 (1949)]. The figure forD(CH3-CH3) follows from this.

    Article  CAS  Google Scholar 

  23. A. D. Walsh, e. g., J. Chem. Soc.,1948, p. 398; Discussions Faraday Soc.2, 18 (1947). The bonding in free CH3 is specifically considered on p. 21 of the latter article.

  24. G. N. Lewis andM. Kasha, J. Amer. Chem. Soc.66, 2100 (1944).

    Article  CAS  Google Scholar 

  25. L. H. Long, Z. Elektrochem.54, 79 (1950).

    Google Scholar 

  26. L. Pauling, Proc. Nat. Acad. Sci., U. S.35, 229 (1949).

    Article  CAS  Google Scholar 

  27. L. Pauling andW. F. Sheehan (Jr.), Proc. Nat. Acad. Sci., U. S.35, 359 (1949).

    Article  CAS  Google Scholar 

  28. L. Pauling andW. F. Sheehan,loc. cit..

    Article  CAS  Google Scholar 

  29. L. Pauling andW. F. Sheehan,loc. cit..

    Article  Google Scholar 

  30. L. H. Long, Proc. Roy. Soc. A198, 62 (1949).

    Google Scholar 

  31. L. H. Long, Research, London3, 291 (1950).

    CAS  Google Scholar 

  32. G. Herzberg andJ. G. Phillips, Astrophys. J.108, 163 (1948).

    Article  CAS  Google Scholar 

  33. For more details, seeL. H. Long, Research, London,3, 291 (1950).

    CAS  Google Scholar 

  34. L. H. Long,loc. cit..

    CAS  Google Scholar 

  35. J. Pauling andW. F. Sheehan,loc. cit..

    Google Scholar 

  36. L. H. Long andR. G. W. Norrish, Phil. Trans. Roy. Soc. A,241, 587 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, L.H. The valence-state energy of the tetravalent carbon atom. Experientia 7, 195–200 (1951). https://doi.org/10.1007/BF02148916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02148916

Navigation