Skip to main content
Log in

The standard model of quantum measurement theory: History and applications

  • Part IV. Invited Papers Dedicated to Max Jammer
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The standard model of the quantum theory of measurement is based on an interaction Hamiltonian in which the observable to be measured is multiplied by some observable of a probe system. This simple Ansatz has proved extremely fruitful in the development of the foundations of quantum mechanics. While the ensuing type of models has often been argued to be rather artificial, recent advances in quantum optics have demonstrated their principal and practical feasibility. A brief historical review of the standard model together with an outline of its virtues and limitations are presented as an illustration of the mutual inspiration that has always taken place between foundational and experimental research in quantum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  2. J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932): English transl.:Mathematical Foundations of Quantum Mechanics (Princeton University Press. Princeton. 1955).

    Google Scholar 

  3. Y. Aharonov and D. Bohm,Phys. Rev. 122, 1649 (1961).

    Google Scholar 

  4. P. Busch,Found. Phys. 20, 33 (1990).

    Google Scholar 

  5. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. P. Sandberg, and M. Zimmerman,Rev. Mod. Phys. 52, 341 (1980). D. F. Walls, inSymposium on the Foundations of Modern Physics 1993. P. Busch, P. Lahti, and P. Mittelstaedt, eds. (World Scientific, Singapore, 1993).

    Google Scholar 

  6. E. Arthurs and J. L. Kelly,Bell Syst. Tech. J. 44, 725 (1965).

    Google Scholar 

  7. B. S. DeWitt, inFoundations of Quantum Mechanics, B. d'Espagnat. ed. (Academic, New York, 1972).

    Google Scholar 

  8. P. Busch, Doctoral Dissertation, Cologne 1982: English transl.:Int. J. Theor: Phys. 24, 63 (1985). P. Busch and P. J. Lahti,Philos. Sc. 52. 64 (1985).

  9. P. Busch, M. Grabowski, and P. Lahli,Operational Quantum Physics (Springer, Berlin, 1995).

    Google Scholar 

  10. Y. Aharonov, D. Z. Albert, and L. Vaidman,Phys. Lett. A 124, 199 (1987):Phys. Rev. Lett. 60, 1351 (1988).

    Google Scholar 

  11. S. Stenholm,Ann. Phys. (N.Y.) 218, 233 (1992).

    Google Scholar 

  12. U. Leonhardt and H. Paul,Phys. Rev. A 47, R2460 (1993): U. Leonhardt,Phys. Rev: A 48, 3265 (1993).

    Google Scholar 

  13. J. W. Noh, A. Fougeres, and L. Mandel,Phys. Rev. A 45, 424 (1992):Phys. Rev. A 46, 2840 (1992).

    Google Scholar 

  14. P. Busch, P. Lahti, and P. Mittelstaedt,The Quantum Theory of Measurement (Springer, Berlin, 1991), 2nd edn. 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, P., Lahti, P.J. The standard model of quantum measurement theory: History and applications. Found Phys 26, 875–893 (1996). https://doi.org/10.1007/BF02148831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02148831

Keywords

Navigation