Advertisement

General Relativity and Gravitation

, Volume 27, Issue 10, pp 1071–1088 | Cite as

Energy content of a slowly collapsing gravitating sphere

  • L. Herrera
  • N. O. Santos
Article

Abstract

We discuss in detail the differences between two different definitions of energy, within a slowly evolving distribution of fluid. The conspicuous role played by the Weyl and shear tensors and their relationship with the inhomogeneity and the anisotropy of the fluid are brought out.

Keywords

Anisotropy Differential Geometry Energy Content Shear Tensor Conspicuous Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Misner, C., and Sharp, D. (1964).Phys. Rev. 136, B571.Google Scholar
  2. 2.
    Feynman, R., Leighton, R., and Sands, M. (1963).The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass.), vol.2.Google Scholar
  3. 3.
    Cahill, M., and McVittie, G. (1970).J. Math. Phys. 11, 1382.Google Scholar
  4. 4.
    Tolman, R. (1930).Phys. Rev. 35, 875.Google Scholar
  5. 5.
    Møller, C. (1952).The Theory of Relativity (Claxendon, Oxford).Google Scholar
  6. 6.
    Whittaker, E. T. (1935).Proc. Roy. Soc. Lond. A149, 384.Google Scholar
  7. 7.
    Cooperstock, F., and Sarracino, R. (1978).J. Phys. A 11, 877.Google Scholar
  8. 8.
    Hawking, S. (1968).J. Math. Phys. 9, 598.Google Scholar
  9. 9.
    Penrose, R. (1982).Proc. Roy. Soc. Lond. A381, 53; (1985).Twistor Newsletter 18; (1985).ibid. 20.Google Scholar
  10. 10.
    Ludvigsen, M., and Vickers, J. (1983).J. Phys. A: Math. Gen. 15 L67; (1983).ibid. 16, 1155.Google Scholar
  11. 11.
    Lynden-Bell, D., and Katz, J. (1985).Mon. Not. R. Astr. Soc. 213, 21.Google Scholar
  12. 12.
    Brown, J. D., and York, J. W. (1993).Phys. Rev. D 47, 1407.Google Scholar
  13. 13.
    Tod, K. (1983).Proc. Roy. Soc. Lond. A388, 457; (1986).Class. Quant. Grav. 3, 1169.Google Scholar
  14. 14.
    Shaw, W. (1986).Class. Quant. Grav. 3, 1069.Google Scholar
  15. 15.
    May, M., and White, R. (1966).Phys. Rev. 141, 1232.Google Scholar
  16. 16.
    Wilson, J. (1971).Astrophys. J. 163, 209.Google Scholar
  17. 17.
    Burrows, A., and Lattimer, J. (1986).Astrophys. J. 307, 178.Google Scholar
  18. 18.
    Bruenn, S. (1985).Astrophys. J. Suppl. 58, 771.Google Scholar
  19. 19.
    Adams, R., Cary, B., and Cohen, J. (1989).Astrophys. Space Sci. 155, 271.Google Scholar
  20. 20.
    Bonnor, W. B. (1992).Class. Quant. Grav. 9, 269.Google Scholar
  21. 21.
    Lightman, A., Press, W., Price, R., and Teukolsky, S. (1975).Problem Book in Relativity and Gravitation (Princeton University Press, Princeton).Google Scholar
  22. 22.
    Bondi, H. (1964).Proc. Roy. Soc. Lond. A281, 39.Google Scholar
  23. 23.
    Schwarzschild, M.Structure and Evolution of the Stars (Dover, New York).Google Scholar
  24. 24.
    Kippenhahn, R., and Weigert, A. (1991).Stellar Structure and Evolution (Springer-Verlag, Berlin).Google Scholar
  25. 25.
    Lake, K. (1989).Phys. Rev. D40, 1344.Google Scholar
  26. 26.
    Cooperstock, F. I., Sarracino, R. S., and Bayin, S. S. (1981).J. Phys. A 14, 181.Google Scholar
  27. 27.
    Grøn, Ø. (1985).Phys. Rev. D 31, 2129.Google Scholar
  28. 28.
    Devitt, J., and Florides, P. S. (1989).Gen. Rel. Grav. 21, 585.Google Scholar
  29. 29.
    Florides, P. S. (1974).Proc. Roy. Soc. Lond. A337, 529.Google Scholar
  30. 30.
    Chan, R., Herrera, L., and Santos, N. O. (1993).Mon. Not. R. Astr. Soc. 265, 533.Google Scholar
  31. 31.
    Herrera, L., Jimenez, J., and Esculpi, M. (1988).Phys. Lett. A130, 211.Google Scholar
  32. 32.
    Landau, L., and Lifshitz, L. (1986).Theory of Elasticity (Pergamon, Oxford).Google Scholar
  33. 33.
    Collins, C. B., and Wainwright, J. (1983).Phys. Rev. D 27, 1209.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. Herrera
    • 1
  • N. O. Santos
    • 2
  1. 1.Departamento de Física, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Departamento de AstrofísicaObservatório Nacional CNPqRio de JaneiroBrazil

Personalised recommendations