Skip to main content
Log in

Second order gravitational field theories with hilbert gauge

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si vuole ottenere una classe di teorie gravitazionali deducibili da un principio variazionale, nell'ambito della teoria dei campi e nello spazio-tempo pseudoeuclideo non-rinormalizzato. Si richiede che tali teorie coincidano, al primo ordine nella costante di accoppiamento f, con la teoria di Einstein. Si assume inoltre la “gauge” di Hilbert al fine di escludere la presenza della componente vettoriale del potenziale ψαβ. Per ottenere la consistenza al secondo ordine delle equazioni di campo, si sostituisce, in queste ultime, al tensore della particellaT (p) αβ il più generale tensore energia-quantità-di-moto\(\bar T_{\alpha \beta }^{(tot)}\). Imponendo alle equazioni di campo di essere deducibili mediante un principio variazionale ove si varino i potenziali ψαβ, si ottiene una lagrangiana che, ove si varino le coordinate della particella di prova, dà le equazioni di moto. In tal modo si ottiene una classe di teorie dipendenti da 5 parametri arbitrari. Per un confronto con i dati sperimentali è necessario rinormalizzare, onde esprimere quantità osservabili. Si dimostra così che per soddisfare il principio di equivalenza al secondo ordine è necessario porre uno dei 5 parametri uguale a zero e che, con tale scelta, l'intera classe di teorie coincide, al secondo ordine, con la relatività generale.

Summary

We consider, in the field-theoretical approach, a class of gravitational theories deducible by a variational principle in the “unrenormalized” pseudo-Euclidean space-time. At first order in the coupling constant f we require the theories to coincide with the Einstein one. Moreover we assume the Hilbert gauge which assure the exclusion of the vector component of the gravitational potential ψαβ. To get the higher order consistency we substitute the most general energy-momentum tensor\(\bar T_{\alpha \beta }^{(tot)}\) for the particle tensorT (p) αβ in the field equations. Requiring the latter to be deducible by a variational principle varying the potentials ψαβ, we get a Lagrangian which, varying the particle coordinates, gives the equations of motion. So we get a class of theories depending on 5 arbitrary parameters. To have observable quantities we have to “renormalize”. So we realize that, to satisfy the equivalence principle, we have to put one of the arbitrary parameters equal to zero. With this choice the class of theories coincides at second order with general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Deser, andB. E. Laurant, Ann. Phys. (New York)50, 76 (1968).

    Article  Google Scholar 

  2. R. H. Dicke, Science,129, 621 (1959).

    Google Scholar 

  3. W. Thirring, Ann. Phys. (New York),16, 96 (1961).

    Article  Google Scholar 

  4. M. Abraham, Jahrbuch Radioakt.,11, 470 (1914).

    Google Scholar 

  5. M. Von Laue, Jahrbuch Radioakt.,14, 263 (1917).

    Google Scholar 

  6. N. Rosen, Phys. Rev.,57, 147 (1940).

    Article  Google Scholar 

  7. S. Gupta, Rev. Mod. Phys.,29, 334 (1957).

    Article  Google Scholar 

  8. R. Feynman, Chapel Hill Conference 1957.

  9. A. L. Harvey, Ann. Phys., (New York)29, 383 (1964).

    Article  Google Scholar 

  10. R. H. Dicke, Ann. Phys., (New York)31, 235 (1965).

    Article  Google Scholar 

  11. R. V. Eötvös, D. Pekar, andE. Fekete, Ann. der Phys.,68, 11 (1922).

    Google Scholar 

  12. P. G. Roll, R. Krotkov, andR. H. Dicke, Ann. Phys., (New York)26, 442 (1964).

    Article  Google Scholar 

  13. R. H. Dicke,The Theoretical Significance of Experimental Relativity (New York, N. Y., 1968).

  14. V. B. Braginsky, andV. N. Rudenko, Usp. Fiz. Nauk.,100, 395 (1970), trans. Soviet Phys. Usp.,13, 165 (1970).

    Google Scholar 

  15. R. U. Sexl, Fortschr. Phys.,15, 269 (1967).

    Google Scholar 

  16. W. Wyss, Helv. Phys. Acta,38, 469 (1965).

    Google Scholar 

  17. V. Ogietsky, andV. I. Polubarinov, Ann. Phys., (New York)35, 167 (1965).

    Article  Google Scholar 

  18. S. Deser, Gen. Rel. and Grav.1, 9 (1970).

    Article  Google Scholar 

  19. H. P. Robertson, inSpace Age Astronomy, ed. A. J. Deutsh, and W. E. Klemperer (New York, 1962), p. 228.

  20. K. S. Thorne, C. M. Will, andW. T. Ni,Proceedings of the Conference on Experimental Tests of Gravitation Theories, ed. R. W. Davies (NASA--JPL Technical Memorandum 33–499, 1971), p. 10.

  21. K. S. Thorne, andC. M. Will, Astrophys. J.,163, 595 (1971).

    Article  Google Scholar 

  22. C. M. Will, Astrophys. J.,163, 611 (1971).

    Article  Google Scholar 

  23. C. M. Will,Lectures in Proceedings of Course 56 of the International School of Physics Enrico Fermi, edited by B. Bertotti (New York, N. Y.) in press; also distributed as a Caltech Preprint OAP-289 (1972).

  24. I. I. Shapiro,Proceedings of the Conference on Experimental Tests of Gravitation Theories, ed. R. W. Davies (NASA--JPL Technical Memorandum 33–499, 1971); see also Phys. Rev. Lett.,13, 789 (1964).

  25. I. I. Shapiro, G. H. Pettengill, M. E. Asch, R. P. Ingalls, D. B. Campbell, andR. B. Dyce, Phys. Rev. Lett.,28, 1594 (1972).

    Article  Google Scholar 

  26. C. W. Everitt, W. M. Fairbank, andW. O. Hamilton, inMagic Without Magic: John Archibald Wheeler, ed. J. R. Klauder (San Francisco, 1972).

  27. G. Cavalleri, andG. Spinelli, Nuovo Cimento B,21, 1 (1974).

    Google Scholar 

  28. K. S. Thorne, D. L. Lee, andA. P. Lightman, Phys. Rev. D,7, 3563 (1973).

    Article  Google Scholar 

  29. G. Nordstrøm, Phys. Z,13, 1126 (1912).

    Google Scholar 

  30. G. J. Whitrow, andG. E. Morduch, inVistas in Astronomy Vol. 6, ed. A. de Beer (London, 1965); see also Sect. 5 of Ref. 16.

  31. L. Infeld, Bull. Acad. Polon. Sci., Cl. III,5, 491 (1957).

    Google Scholar 

  32. G. Kalman, Phys. Rev.,123, 384 (1961).

    Article  Google Scholar 

  33. G. Cavalleri, andG. Spinelli, Lett. Nuovo Cimento,9, 325 (1974).

    Google Scholar 

  34. H. Weyl, Am. J. Math.,66, 591 (1944).

    Google Scholar 

  35. M. Fierz, Helv. Phys. Acta,12, 3 (1939).

    Article  Google Scholar 

  36. G. Cavalleri, andG. Spinelli, Lett. Nuovo Cimento,8, 67 (1973).

    Google Scholar 

  37. G. D. Birkhoff, Proc. Nat. Acad. Sci.,29, 231 (1943);ibid.,30, 324 (1944); see alsoA. Barajas, G. D. Birkhoff, C. Graef, andM. Sandoval Vallarta, Phys. Rev.,66, 138 (1944).

    Google Scholar 

  38. D. R. Brill, andS. Deser, Ann. Phys., (New York),50, 548 (1968).

    Article  Google Scholar 

  39. G. Spinelli, Lett. Nuovo Cimento,8, 1031 (1973).

    Google Scholar 

  40. G. Cavalleri, andG. Spinelli, to be published.

  41. L. D. Landau, andE. M. Lifshitz,The Classical Theory of Fields (Oxford, 1962) 2nd Ed., Sect., 32, p. 89.

  42. G. Wentzel,Quantum Theory of Fields (New York, N. Y., 1949), Appendix 1.

  43. F. J. Belinfante, Physica,6, 887 (1939).

    Article  Google Scholar 

  44. L. Rosenfeld, Mém. de l'Acad. Roy. de Belgique, No. 6, 1940.

  45. A. Capella, Nuovo Cimento,42, B 321 (1966).

  46. B. Finzi, Rend. Ist. Lomb. di Sc. e Lett.,63, 1089 (1930).

    Google Scholar 

  47. B. F. Plybon, J. Math. Phys.,12, 57 (1971).

    Article  Google Scholar 

  48. G. Cavalleri, andG. Spinelli, Nuovo Cimento21, B, 27 (1974).

  49. V. Hughes, H. C. Robinson, andV. Beltrand-Lopez, Phys. Rev. Lett.,4, 342 (1960).

    Article  Google Scholar 

  50. R. W. Drever, Phil. Mag.6, 683 (1961).

    Google Scholar 

  51. C. W. Misner, K. S. Thorne, andJ. A. Wheeler,Gravitation, (San Francisco, 1973).

  52. W. Pauli,Theory of Relativity, (Oxford, 1952) pp. 75, 220.

  53. D. Lightman andD. Lee, Phys. Rev.,8, 364 (1973).

    Google Scholar 

  54. H. Rund,The Differential Geometry of Finsler Spaces, (Berlin, 1959).

  55. D. K. Ross, andL. I. Schiff, Phys. Rev.,141, 1215 (1966).

    Article  Google Scholar 

  56. R. H. Dicke, Nature,202, 432 (1964); Ann. Rev. Astro. and Ap.,8, 297 (1970).

    Google Scholar 

  57. R. H. Dicke, andH. M. Goldenberg, Phys. Rev. Lett.,18, 313 (1967).

    Article  Google Scholar 

  58. I. W. Roxburgh, Nature,213, 1077 (1967).

    Google Scholar 

  59. I. W. Roxburgh, Nature,214, 1296 (1967).

    Google Scholar 

  60. W. E. Werner, Solar Physics,21, 21 (1971).

    Article  Google Scholar 

  61. G. A. Chapman, andA. P. Ingersoll, Astrophys. J.,175, 819 (1972).

    Article  Google Scholar 

  62. R. H. Dicke, andH. M. Goldenberg, Nature,214, 1294 (1967).

    Google Scholar 

  63. R. H. Dicke, Astrophys. J.,175, 831 (1972); Science,184, 419 (1974).

    Article  Google Scholar 

  64. H. A. Hill, andR. T. Stebbins, to be published in Astrophys. J.

  65. H. A. Hill, P. D. Clayton, D. L. Patz, A. W. Healy, R. T. Stebbins, J. R. Oleson, andC. A. Zanoni, to be published in Phys. Rev. Lett.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research sponsored by the CNR, Gruppi di ricerca Matematica

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinelli, G. Second order gravitational field theories with hilbert gauge. Meccanica 10, 32–41 (1975). https://doi.org/10.1007/BF02148283

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02148283

Keywords

Navigation