, Volume 10, Issue 1, pp 27–31 | Cite as

Relative kinematics in general relativity the thomas and fokker precessions

  • E. Massa
  • C. Zordan


The theory of space tensors is applied to the study of the motion of a gyroscopically stabilized point compass in a given frame of reference (Γ, ∇*). The Thomas and Fokker precessions are obtained as special subcases of the general result.


Mechanical Engineer General Relativity Civil Engineer General Result Allo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Il concetto di sistema di riferimento fisico in uno spazio-tempo ϑ4 viene applicato allo studio del moto relativo di un giroscopio puntiforme in Relatività Generale. La precessione di Thomas e la precessione di Fokker sono ricavate come casi particolari del risultato generale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Massa,Space Tensors in General Relativity. I: Spatial Tensor Algebra and Analysis, General Relativity and Gravitation,5, 555 (1974).CrossRefGoogle Scholar
  2. [2]
    E. Massa,Space Tensors in General Relativity. II: Physical Applications, General Relativity and Gravitation,5, 573 (1974).CrossRefGoogle Scholar
  3. [3]
    E. Massa,Space Tensors in General Relativity. III: The Structural Equations, General Relativity and Gravitation,5, 715 (1974).CrossRefGoogle Scholar
  4. [4]
    C. Moller,The Theory of Relativity, Oxford, Clarendon Press, 1952.Google Scholar
  5. [5]
    C. Cattaneo, Il Nuovo Cimento,10, 318 (1958).Google Scholar
  6. [6]
    C. Cattaneo, Il Nuovo Cimento,11, 733 (1959).Google Scholar
  7. [7]
    C. Cattaneo, Annali di Matematica, XLVIII, 361 (1959).Google Scholar
  8. [8]
    C. Cattaneo,Introduzione alla Teoria Einsteniana della Gravitazione, Roma, Veschi, 1961.Google Scholar
  9. [9]
    C. Cattaneo, Comptes Rendus de l'Acad. des Sc.,256, 3974 (1963).Google Scholar
  10. [10]
    F. Eastbrook, H. Wahlquist, J. Math. Phys.,5, 1629 (1964).CrossRefGoogle Scholar
  11. [11]
    J. L. Synge,Relativity: The General Theory, Amsterdam, North Holland, 1960.Google Scholar
  12. [12]
    L. W. Thomas, Phil. Mag.,3, 1 (1927).Google Scholar
  13. [13]
    A. D. Fokker, Proc. Roy. Acad., (Amsterdam),23, 729 (1920).Google Scholar
  14. [14]
    V. Fock,The Theory of Space, Time and Gravitation, London, Pergamon Press, 1959.Google Scholar

Copyright information

© Tamburini Editore s.p.a 1975

Authors and Affiliations

  • E. Massa
  • C. Zordan
    • 1
  1. 1.Istituto matematico dell'Università di GenovaItaly

Personalised recommendations