Advertisement

Hyperfine Interactions

, Volume 16, Issue 1–4, pp 597–600 | Cite as

Low-temperature spin-lattice relaxation of8Li in the glass Li2O·2SiO2

  • P. Heitjans
  • B. Bader
  • H. -J. Stöckmann
  • K. Dörr
  • G. Kiese
  • H. Ackermann
  • P. Freiländer
  • W. Müller-Warmuth
  • K. Meise-Gresch
Relaxation Phenomena Insulators

Abstract

Nuclear spin-lattice relaxation in Li20·2Si02 glass below 200 K has been studied using the asymmetric Β-decay radiation of polarized8Li (T1/2=0.Bs) nuclei produced by capture of polarized neutrons. Transients of the8Li polarization follow an exp(−√E/T1) law. The dependence of the spin-lattice relaxation rate ⊥¯11 on temperature T and magnetic field B can roughly be described by T¯11∼T/B. The interpretation is based on the assumption that for8Li, contrary to7Li in the same glass, spin-diffusion is absent and that each probe nucleus is coupled by quadrupolar interaction to an individual distribution of nearby centres typical of glasses. The fluctuation of these centres causing relaxation may be induced by either a multi-phonon or a thermally activated motional process.

Keywords

Radiation Magnetic Field Thin Film Relaxation Rate Li2O 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    W.A.Phillips(ed.), Topics in Current Physics, vol.24 (Springer, Heidelberg 1981)Google Scholar
  2. /2/.
    J.Szeftel, N.Alloul, J.Non-Cryst.Solids 29(1978)253CrossRefGoogle Scholar
  3. /3/.
    W.Müller-Warmuth, H.Eckert, Physics Reports 88(1982)91CrossRefGoogle Scholar
  4. /4/.
    P.W.Anderson, B.I.Halperin, C.M.Varma, Phil.Mag.8(1972)1Google Scholar
  5. /5/.
    W.A.Phillips, J.Low Temp.Phys. 7(1972)351CrossRefGoogle Scholar
  6. /6/.
    H.Ackermann, P.Heitjans, H.-J.Stöckmann in Topics in Current Physics, vol.31 (Springer, Heidelberg 1983)p.291Google Scholar
  7. /7/.
    P.Heitjans, B.Bader, K.Dörr, H.-J.Stöckmann, G.Kiese, H.Ackermann, P.Freiländer, W.Müller-Warmuth, J.Physique 43(1982)C9–143Google Scholar
  8. /8/.
    E.Göbel, W.Müller-Warmuth, H.Olyschläger, J. Magn.Res. 36(1979)371Google Scholar
  9. /9/.
    H.-J.Stöckmann, P.Heitjans, to be publishedGoogle Scholar
  10. /10/.
    J.A.Sussmann, Ann.Phys. (Paris) 6(1971)135Google Scholar
  11. /11/.
    O.L.Anderson, H.E.Bömmel, J.Am.Ceram.Soc. 38(1955)125Google Scholar
  12. /12/.
    S.Hunklinger, M.v.Schickfus in /1/ p.81Google Scholar
  13. /13/.
    S.Hunklinger, J.Physique 43(1982)C9–461Google Scholar

Copyright information

© J.C. Baltzer Scientific Publishing Company 1983

Authors and Affiliations

  • P. Heitjans
    • 1
    • 2
  • B. Bader
    • 1
    • 2
  • H. -J. Stöckmann
    • 1
    • 2
  • K. Dörr
    • 1
    • 2
  • G. Kiese
    • 1
    • 2
  • H. Ackermann
    • 1
    • 2
  • P. Freiländer
    • 1
    • 2
  • W. Müller-Warmuth
    • 3
  • K. Meise-Gresch
    • 3
  1. 1.Fachbereich PhysikUniversität MarburgW.-Germany
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.Institut für Physikalische ChemieUniv. MünsterW.-Germany

Personalised recommendations